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EXECUTIVE SUMMARY

The outcome of armed cqnflict always depends on the decisionp made2 by the
participants as fhe conflict unfolds. As part of its program in mathematics,
the Office of Naval Research (ONR) has sﬁonsored work to develop novel models

‘of deci.ionn@king during conflict, in order to broaden understanding of the
factsra leading to altefnative outcomes. In this final report, prepared under
contract 800014-84-0-6458 for oﬁx, nev results in decision modeling and new

- results obtained using these wmodels are described.

' The Navy needs a predictive nathematiéal theory of decisionmaking in
dynanic, multiperson decision situations to better understand command and
control in Naval Eonflict. Models represeanting both friendly and hostile
forces, both side# distributed over the sea with limited communications among
partiéipants'on each side, must ultimatelx be treated by gorm;l mathematicel
theory to provid? a sound basis fo? future n}sten deslgn.: fhe theory should
combine results from the mathematics of multiperson decisionmaking with
results from behavioral theories of human decisionmaking under'uncertainty.
This novel combin;tion‘of approaches would provide vaiuablé qualitative and
quantitative irnsights into the behavior of distributed decisionmakers in com—
plex situations of interest to the Navy. The work reportéd here {s ; contri-
.bution towards the nultfdisclplinary‘theoretical extension needed, drawing on
existing prescriptive mathematical approaches to mulgipersbn decisionm;king
an& on descrip:ive‘approaches to human behavior modeling reported in the beha-

vioral decision theory literature.
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Mathematical game theory studiés decisionmaking in problems with zultipie
decisionmakers. Game theoretic results characterize decision strategies and
outcomes which are rational in the context of specific quantitative behavioral
norms. Hence, the purpose of game theory is to prescribe “rational behavior®
in a multiperson decision situation. However, game theory has several short-
comings in providing a predictive theory of multiperson decisionmaking:

1. It is based on the assumption that all decisions will be

strictly rational decisions, allowing for no deviations

from rationality.

2. Rational behavior is defined in terms of Von Neumann's
maximum expected utility paradiga [1].

3. It assuaes that every decisionmaker has a common represen—

tation of the overall decision problem (the rules of the
game and the game parameters are common knowledge ([2}).

4. It assumes that players are fully-committed to select
future decisions in accordance with apriori-selected
strategies. It does not permit adaptive decisionmaking
-behavior.

5. It assumes that processing of information bdy the decision-
makers will be done optimally, in a Bayesian framework [3]}.-

6. It does not explicitly consider human limitations and beha-

vioral trends in information processing, option evaluation,

and action selection.
Empirical research on hun#n decisionmaking [4],[5], has éétablished that all
of the above assumptions are systematically violatéd in specific situatio&s.
This work has led to several extensions of the basic framework 6f game theory.
For example, the receﬁt research in p;rfect, proper and sequential equllibtia_
in nonzero sum games [6]-[8] is concerned'with defining rational behavior in ‘
a way which takes into account the possibility of “irraticnal™ actions. The

work of Aumann and Maschler [9], Ho {10}, and others [11] studies games where

the assumption of prior committment to apriori strategies was relaxed. The
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work of Harsanyi [12],{13], and others ([15]-[16]) o~ games of incomplete is

aimed at relaxing the assumption that every decisionmaker has a common repre-

sentation of the overall problem. The work of Kadane and Larkey [17],[18] and

Wilson t19] advocates viewing the wultiperson decision problem as a set of

‘subjective single person decision problems, where each participant dodels the

expected actions of the other decisionmakers by subjective probabilities.

The purpose of our research effort was to further develop the mathemat-~

_ 1cal theories of multiperson decisionmaking by explicitly considering multi-~

person decision models which incorporate human limitations and behavioral
trends in information processing, option evalugtion, and action selection.
It is our opinion that a predictive, quantitative theory of wmultiperson deci-
sionmaking must adopt the viewpoint of a person evaluating his decision alter~
natives in a real—iine, dyhamlcally-evolving situation. Thus, at any tine! a
human's decision problem nepataiea into three stages:

1. How he interprets the information he's observed in the past,

2. How he ranks his possible decisions at the present time, and

3. How he se}ects a decision based on thése rankings. |
These stages correspond to the‘lagt three stages in the SHOR,pafadign for
human decisionmaking discussed in Wohl [20). The SHOR paradigm is illustrated
Fig. 1. Using this paradigm, we were able to organize ;he‘classes of human

behavioral traits which should be considered in the multiperson decision

models. 1In the first stage, we had to consider biases and limitations in the

interpretation and combtnatibn of information obtvined through observations of
the décision problem. In the second stage, ve had to consider how individual
decisiomakers would evaluate their cﬁoices; behévioral decision theory has

proposed a number of competing axiomatic models (e.g., [21]) for this process.
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" TRIGGERING EVENT (DEADLINE, POLICY, ENEMY ACTION, NEW DATA, E‘TC.)

. M
L S HYPOTHESIS OPTION R
STIMULUS {PERCEPTION " (RESPONSE RESPONSE
o (DATA) ALTERNATIVES) ALTERNATIVES) " (ACTION)
ENVIRONMENT .
RAW OR PREPROCESSED DATA ACTION OR COMMUNICATION
ANTAGONISTS ,
PROTAGONISTS

Figure 1. Dynamics of Tactical Declision Process - the SHOR Model
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In the last stage, we had to consider how actions were selected based on thefr

evaluation (e.g., {22],[23]).

Starting from this premise, we began our research by reviewing avaiiable
resulis on huﬁan behavior in information procesging,'opt;on evaluation and
response sélectlon. A brief summary of some of these results is included.in
Appendi; A. Essentially, the literature coantains ample evidence that oﬁe of
the fundamental a.sumptions of game ;heo;y, defining rational behavior in
teras of naximization df expected utility; is aystematicéily vioiated'(see
ﬂachina'a suivey [24]). thus, nmsny alternative formulations for prescribiﬂg
rational behayior or describing hﬁman behavior have been p?oposgd ([41,15)).
Researchers such as Kadane and Larkey [17] have gone as far as suggesting
that a prescriptive tﬂeory for human decisionmaking in mﬁltiperson decision
problems should adopt a single decisionmaker perspective; where the gctions
of other decisionmakers are modeled by a subjective ptobabilify over ihe
possible set of aéiiong. There has been considet#ble debate on this approach,
centerinngn whether the subjective probability should depend on the current .
choice of action of the deciaionmakef, and on how such subjeciive probabil-
ities are computed [25])-{28]).

The next step In our research addressed the key philosophical question
concerning any theory of multiperson decisicumaking, namely: What informa-
tion does each deciéi&nmaker have éoncerning the béhavioral characteristics
of the other decisionmakers? To illustrate the importance of this question,
consider the game-theoretic model. In game th;ory, this information is fart
of thé‘rules of the game. Hencee, this in£ormécion is represented as common
knowledge. Spec;fically. the utility funciion of each decisionmaker'is known

to every other decisionmaker. Using Harsanyi's theory of games of incomplete
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information [12], this assumption can be relaxed so that an individual's

utility function is known only probabilistically to other decisionmakers.

However, this probability distribution is again common knowledge; this means,

for example, that decisionmaker 1 has perfect knoﬁledge of how decisionmaker
2 models decisionmaker 1's behavior; Thus, in Harsanyi's theory of games of

incomplete information, the assumption of common knowledge has been moded one

level higher, to common knowledge of a probability distribution rather than of

.a specific value. Howevef, this assumption still {implies that each decision-
maker knows very well the thinking process of other decisionmakers.
Given the'nultiple possibilities for models of human decisionmaking

described in Appendix A, ve felt that the specific parameters of an individual

decisionmaker would be known primarily to himself, and not to the other deci~

sioumakers. There are féuf possible classes of approaches for mathematically
noaeling the information which each decisionmaker has concerning the beha-
vioral characteristics of the other decisionmakers. These are:
-1 .Commoﬁ knowledge,

2. Private knowledge with imperfect information,

3. Private knowledge with incomplete 1nformation,'and

4. Secret knowledge.
Modeling behavioral characteristics information as common knowledge assumes
that each decisionmaker knows every other decisionmaker's behavioral charac-
teristicg, and this info?mation is common knowledgé‘fn the sense of [2].
Modeling the informatioﬁ as private knowledge with 1mper£ect fnférmation mean§
that rhere i{s a joint probability distribution over all the decisidnmakers;
possible behavioral characteristics.' This probability distribution is itself

© common knowledge among decisionmakers; in addition, each decisionmaker is
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provided with partial information concerning the behavioral characteristics
of the other decisionmakers. |

Modeling the inforﬁation as private knowledge with incomplete information
is similar, except that there is no overall jSint probability distribution
which is common knowledge; in this case, eaéh decisionma%er must subjectively
construct this probaﬁility distribution. Modeling this information as secret
information means that each decisionmaker has a subjective mddel.of every
other decisionmaker‘ and any diffefencéa»among the mndels held by difrerent
decisionmakers. is secret‘knowledge. ‘

From a mathematical perspéctive, modeling human characteristics of deci~
sionmakérs as common knowledge is #he approach which is most akin to game
theory. Essentially, human characteristics of decisionmakers wouldybe incor-
porated into the rules of the gaﬁe. Fbt example, risk-averse behavior [24]
would de representéd as a factor in a decisipnmakér'a utility; similarly, any
biases in information proqeésing would be incorporated in the'rules for up-
dating of pfobabilities. Such ﬁodlficatioh to the expected utility paradigm
vould result in the violation of several 1mportaﬁt game theory results. For
example, Von Neumann's normalization principle (1], which states that a game
is eitensivé'form canlbe reduced to an equivaledt game in normal forﬁ, may not
be applicable if probabilities do ﬁqt evolve accofding to Bayes' rule or if
strategies are not selected according to the expected utility model.

Although conveniént frem a mathematical perspective, the common'knowledge
approach is the least satisfactory frem a modeling perspective, because it
assumes that each declsionmaker has a very accurate model of the other deci-

sjionmakers. The private knowledge with imperfect information approach makes
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weaker assumptions concerning the knowledge provided to decisionmakers co:-

cerning the knowledge provided to decisionmakers concerning the behavior ot

other decisionmakers. However, the imperfect knowlédge is modeled br a proba-

bility distribution which is common knowledge. It is not clear that in multi-.

person decision situations, such a state of common knowledge can be achieved
without an extensive cooperative bargaining session to agree on this proba-
bility. For many military situations of interest, this may not be possible.
From a practical perspective, the last two approaches capture thevsub—‘
jective nature of human decisionmaking best. In the private knowlgdgé with
incomplete information approach, each decisionmaker can subjectively estimate
a probability distribution for the decisionmaking'chata;teristics of every.
othé; decisionmaker. However, these estimate; are subjective éstimates, and
there is no reason that they must be ;onsistent across decisionmakers. In the

secret knowledge approach, each decisionmaker models the human characteristics

‘of other decisiormakers as values rather than probability distributions ahd

assumes that these vaiues are correct. Again, the faqf that these values mai
be incorrect is sec;eﬁ knéwledge to each decisionmaker. . In both of these |
apptvaches, each decisionmaker has a subjective model of how he and other
decisionmakers will make decisions. However, these models need not be consis-
tent acrcss decisionmakers. This leads to a number of interesting questions
which we ¢ 'Jressed 15 our research.

1. 1.2 qualitative results characterizing outcomes of multiperson

decision situations chang: due to the subjective model dif-

fcrances among decisionmakers?. -

2. How do decisionmakers interprét information éhey receive
from other decisionmakers?

3. How do they incorporate this information to form their
decisions?
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4. Do the decisionmakers realize during the play of the game
that their decision models are inconsistent?

5. Do those inconsistencies prevent the decisionmakers from
reaching a desirable outcome?

6. When inconsistencies are detected, how do the decisionmakers‘
modify their subjective models?

In order to study these questions in a specific context, we considered
two classes of multiperson decisionmaking problems:

1. Consénsus Problems, and

2. Two-Person nonzero sum gﬁmes oflincénblete 1n£o¥matibn.
In consensus problems; ﬁultiple decigionmakers with private information and
a common goal are trying to each a consensus decision by proposing tentative
deéisions recursively among themselves. Consensus problems are a simple class
of cooperative decision problems emphasizing the implicit infOtm;tion transfer
amorg decisionmakers through the choice of decivions (signaling). Under
"simple communication conditions, thé results ~f [29]-[34] establish that, in
the absence of'sutjective mo&el differences, a consensﬁs is alvays'reached.
However, differences in subjective models among decisionmaker s wmay lead to
misunderstandings in the signaling pfocesses,,thereby preventing fhe decigion-
makers from reaching a consensus. v

OQur first invest}gation of these problems is summarized in the pafer 16
Appendix B. In this paper, we show'that;lfor a specific consenéus problem of
estimatfng the probability of an event, when the in&ividual differences among
decisionmakers are secret knowledge, the‘consen;u; process can reach a state
of contradiction.. In this stage, the signals from one decisionmaker cannot
be interpreted by another decisionmaker due to the secret difference between

their models. Thus, the secret information that the subjective models were




different becomes c;mmon knowledge. In Appendix C, we shov'thatlthia phenom-
enon {s typical of general consensus problems when differences in subjective
decisionmakers are secret knqwledge. Furthermore, we establish that.there are
only two classes of qualitt;i?e outcomes posgible: a consensus 1is reachea,
so the differences in subjective modeis remain secret knowledge, or a contra-'
diction 1is reached, so the differences in subjective models become common
knowiedge. .

One question which was not addrelaedrin the results in Appendices B and
C concerned the likelihood of the two classes of outcomes. For specific
probléms, how likeiy w2s a contradictory outcome? 1In Appendix b, we develop
; number of results which provide answers to'tﬁis quesfion./ Specifically, we
derive conditions, depending on the type of consensus problem, which charac-
terize whether the set of iubjective nodel; which result in contradictions 1s
a dense set in the set of possible models, using a specific topology. We also
derive conditions which characterize when the consensus process is robust to
small differences ig subjective models.

iuAthe papér in Appéndix D, we also study the consensus problem when the
differences among subjective models are represented as private information
with either incomplete or impetfect‘knowledge. That is, there is a second-
order probabilicy ﬁode}lwhich describes each decisionmaker's aubjectivg
.beliefs concerning the dezision model of the other decisionmakers. The
results in Appendix D es:abliéh that the two classes of qua.itative outcomes
described previously'can occur. In addition; there is yet a thitd‘class'df
outcomeé; which can be déscribed as follows. 1In these.outcomes,'the con#ensus

process reaches a state where each decisionmaker cannot learn any additional

10




information from the tentative decisiono communicated b} other decisionmakers.
However, there is a significant difference in information among decision-
iakers, so that & cona?nsus is not reached.

The r?ault in Appendix D is very surprising. ICon-iﬂ-r a conseusus pro—
cess vhere two decisionmakers have exactly the same decision model. According
to the results of [32]. a consensus will be reached eventually. However,

assuse nov that both decisionmakers have exactly the szme decision model, but

they do not know it for certain! The results in Appendix D show tﬁat, ia this
-nituation. this lack of.certalnty can lead the consensus process to a stalled
state, from which a consensus cannot be reached. In essence, the lack of
certainty prevents :hg cousensus process from transmitting enough information
to achieve a consensus outcome.
This result has important implications for sora general classes of multi-
‘perlon deciaioq proﬁlenn, such as cooperative bargalning problems. Loosely
interpreted, lt'states that the presence of uncertainty coancerning behavioral
characteristics of the bargaining decisionmakers can lead to a stalemate in
the bargaining process. In practical situations, this stalemate can be broken °
by changing the nature of the bargaining process, nuch as bringing in an
arbitrator. |
In the area of nonzerc sum games of incomplete information, we considered
a simple class of two-person symmetric games. We developed an axiomatic for-
mulation describing the subjective decision model approach discussed above.
Based on this formulqtion; we studied ihe properties of the rational strate-
gfes and outcomes 6f both Lﬁe'sgatic and infinlcely-repeated versions of the

gaze. The results in Appendix E show that, under the assump:iion that 2ach

11




decisionmaker is subjectivelvy rational according to his owa internal model*

in the static case, the existence of differences between iubjec:ive models

becomes common knowledge. However, in the infinitely-repeated gaae, rhrese
d!fferences 2re ameliorated during the pl;} of the gau;, so thot there exist .
core equilibriuam ;trategles which are rational from each decisionmaker's
pevspective. In Appendix E, we show that whether ;he subjectlve ditrerences
become commcn knowledge or cannot depend on the specific bargaiyfng strategy
used for selecting smong potential core equilibrium outcomes.

In sum, our research hes investigated two clusses of mathematical models
of sultiperson deéliionnaking in dynanic situations which focus on the subjec-'
tive nature of human behavioral characteristics in informatfion processing,

option evalustion and action selection. Our mathematical formulation is sim

1lar in spirit to K~.dane and Lerkey's [17], in that individual rationality is

defined in terms of subjectivcvnodels.' However, we do not propose to replace

the game—theoretic models {n these subjective models by decision theory models
using subjective probabiiitiea of action for other‘decisiﬁnnakers.' Instead,
wve have developed a mathematical formulation which allows for differences in

subjective game theory mocdels among decisionmakers. Our research focused on

~ studying the qualitative implicaticns of these differences in cooperative and

noncooparative paradigms. The results developed in the appendices‘to this
report sh?d considerable light oﬁ theselimplicationv in dynamic decisicnmaking
Jnder uncertainty.

Nevertheless, many technical ptoﬁlems remain to be addressedf :?erhaps’

the key qdestion‘remaining unresolved {s how to effect';he resolution of model.

*For an interesting discussion of the application of Jniernal models to repre-
senting Navy Commard and Control decisionmaking, see Athans {35].
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diffcrcn;el once they are discovered. The approach prdpo-ed in Appendix D
requires that an inference problea be started at that time to prOpe;ly iden~
tify the wmodel dttfercﬁccs.i This approach does not indicate how to reuolv§
these differeaces to achieve a desirable quillsltive outcome, either thtéugh
a common calibration process or a bargaining process. '

The subjective game framework which was used througaout our research
provides a foundation‘er theldevelopnen; of a quantitative predictive theory
of multiperson deeinionnahing. In'our opinion,lthe next msjor ster is the

developmeat of specific behavioral theories and mathematical models of these

theories for human decisionmaking in dynamic multiperson decision situations.

"As seen in the survey in Appendix A, the state of the research in individual

decisfor theory has focused on developiﬂg alternatives to the expected utility
paradiga [1]; the mmercus coupeélng alternatives must be narrowed down and
shown to b§ ouperiof to the expected utility paradigm. Furthermore, addi-~
tiinal resesrch is needed to focus on the multiperson aséectt oflbehsvioral
throrias of fnformation processing and option selection. Based on these
results, specific quantitative models of multiperson decisionmaking can be
developed and evaiua:ed in empirical research. These research directions are
being followed in -aﬁy research programs, so that progress tou;rda the devel~
opment of a quantitative predictive theory of multiperson decisionmaking will

continue.
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APPENDIX A

~ AN OVERVIEW OF RESULTS OF HUMAN DECISIONMAKING
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APPENDIX A

AN OVERVIEW OF RESULTS IN HUMAN DECISIONMAKING

A.1 INTRODUCTION

In this appendix, we overview some of the\principal results available in

the literature concerning empirical studies of how humans make decisions. We

have organized these results into two sections: Human Inference, dealing with

the prodblea of situation'as;esinent and hypothesis av;lcazians, and utility
theory, dealiﬁg Qith the problems of option evaluation and option selection.
For a more detailed review of these disciplines th; reader is referre' to the
excellent surveys and books by‘napoport and ﬁallnten {1972}, Slovic, Fishoff
and Lichtenstein [1977], Einhorn and Hogarth [1981}, Kahneman, Slovic and ‘

Tversky [1982], Schoemaker [1982], Fishburn [1982] aﬁd Machina [1983].

A.2 HUMAN BEHAVIOR IN SITUATION ASSESSHﬁNT

Since most of the decision tasks ilavolve uncertainty, considerabdle effort

has been spent in studying how people formulate and change their opinions
about uncertain hypothéses. The literature in the area of subjective proba-
bility‘assessuent and revision of opinion shows two different approaches to
the mndeling problem. The first approach; advanced by statisticians and
psychologists, ifs based on probability thgory and statistics and relies on‘
the concept of a "statistical man' - un optimal; Bayeslan'inferer (observer).
Bayes' rule provides a'normative representhtioﬁ of how a decisionmaker should

revise his probability estimates on the basis of new information. The
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descriptive considerations have been handled primarily by adjusting the

functional fofn of the normative model. This approach led to the study of
“congervatism™ - a suboptimal human behavior that produces posterior proba-
bilities nearer to the prior prcuabilities than those specified by Bayes'

rule (Edwards and Phillips [1964]; Péterson and Beach [1967]). The second
approach, proposed mainly by psychologists, argues that the human 1s a
selective, sequential information processor with limited capacity (Hogarth
(1975]); It 12 hypothesized that this limited information—processing capacity
.leads hinm t;Iapply sinple'héuriutics and cognitive stracegies which reduce.
the complex tasks of assésaing probabilities and predicting values to cinpler

judénental operations. Much of the work on’this judgmental heuristics has

.been performed by Tversky and Kahneman [1971}, [1973], [1974]. They demon-

strated that three judg. > ntal heuristics - representativeness, availability,
adjustments and anchoring - Jetermine probabilistic iiferencen in uahy tasks.
waever; these findings can only .~ described in qualitative terms and, as

yet, no quantitative descriptive theory based on the heuristics has emerged.

A.2.1 Bayesian Revision of Opinion

Bayes® rule has provided much of the impetus to the research on
normative-descriptive modeling of.judgmental processes. A basic hypothesis
1s that opinions (Jjudgments) should be expressed in terms of subjective proba-
bilittés and that the optimal revision of such opinions must‘be accomplished
via Bayes' rule. A considerable number of studies, involving mainly binomial
(qo called.'bookbag and poker chip” gameg) and multinomial tasks, have :om-
pa}ed subjects' numerical probability assessments to those predicted by Bayes'
rule (Edwards and Phillips [1964]; Peterson and Beach {1967}, Donnel.and
Duchrame {1975]}). A general, but by no means universal, conclusion has been
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thit.the estimates were monotonically related to those specified by Bayes'
rule, but were couservative. That is, the posterior probabilities estimated
by subjects were nearer to the prio; probabilities than thoée obtained via
Bayes' rule. ;Several explanations are offered for the phenomena of conserva-
tism. It is believed that conservatism is due,vin small pari, to procedural
variables (e.g-,‘payoffa and incentives, sample size, sequential orderiﬁg of
the data, prior probabilities, etc.) and,lin large part, to subjects' misper-
ception of the underlying aam#ling'diatributions. nisagﬁ:egation of the data,
§r simply r;spgnse blas. Misperception is generally attributed to the mis-
ndfch between subjective and actual (objective) pfobability distributions
(Peterson, Duchrame and Edwards [1968]); Wheeler and Beach [1968],
Lichtenstein and Feeney (1968]), and to the human ﬁendency to discount the
importance of rare events when they occur (Vlek and Van der Héjden [1967}]).
Misaggregation refers to the n&noptimal gequential revision of subjective
probabilities and has been advanced as the major source of conservatism
prinarily by Edwards and his associates (Edwaris [1968], Edwards, Phillips,
Ha&es and Goodman [1968]).v The notion of response blas was advanced by
Peterson [1968] and 1s related to subjects' uuwillingnéss to use extreme
numbers andlodds. ‘4 compreheqsive review of tﬁe issue of conservatism 1is
provided by Slovic and Lichtenstéin f1971], Rapoport and Wallsten (1972] and
Slovic, Fishoff and Lichtenstein [1977].

Along different lines, Kahneman and Tversky {1973], Tversky and Kahneman
[1974] and Grether [1980] among others, have found that probability uﬁdating
undéfweighs prior information and over;eighs fhe representétivenesé cof the

current sample. This phenomena is similar to Tversky and Kahneman's [1971]
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iav of small number;. Tveréky and Kahneman [1983] have also found biaées in
the combination of evidence from independent and correlated sources.

" 1In an attempt to overcome the descriptive deficiencies of the Bayesién
model, severallempirical modifications to Bayes' rule have been offered.
These modifications can be embedded into a genefalized version of Bayes' rule,
where an additionel term is multiplied to the likeiihood of each hypcthesis.
This term 13 called a disability or 1m§ediment function in Edwards and
Phillips [1964], and 1s supposea to capture the suboptimal nature of human
{nformation processing (Snapper and Frybach [1971}).

Although Bayesian revision of opinion can be studied as a aeﬁarate
phenomena, it is most usefui when interwoven with decfsionmaking and‘actioq
seléction. The posterior probabilities of varioug hypotheses (;tateé of
nature) can be used, in combination with information Qbout payoffs associatea
with various decisions and statcs of nature, to maximize.the (sudjective)
expected value, the (subjective) expected utility, or whatever criterion of
optimality. Human performance modeling in signal-detection tasks exemplifies
this approach. The task of the subject is to decide whether or not a signal
is present inva block of observations.

Signal-detection experimentsvhave been conducted in a vi&e var(ety of
contexts. Examples are experiments in sound localization (Voelcker [1961]),
detection of movement (Kinchela and Allen [1969]), speech recognition (Egan,
et al. [1961]), and recognition of memorized words (Parks [1966]). - A com-
'preﬁensive exposition of signal-detection theory and psychophysics has beén
provided.by Green and Swets [1966], and a fine summary of the theory 1is pro—

vided by Sheridan and Farrel [1974].




e

The experimental results show that the human performance is monotonically
related to those predicted by the model. It is possible to manipulate subjec-
tive decision thresholds (criteria) by varying prior probabllities and pay-
offs. However, Fhe Amount of change has been found to be less thén optimai.
The subjects also have difficulty aggregating information across a seqﬁence
of trials (Swets and Green [1961]) - a tendency similar to coqsetvat;sm in
Bayesian revision of opinion.

An additional effect‘in human 1nferen§e which cannot be represented uéing
impediment funtions is the asymmetry between effect—cause infgrencea ari’
cause-effect inferences noted in Ajzeﬁ (1977}, Tversky and Kahneman [19809]

and Einhorn and Hogarth [1981}. The empirical evidence indicates that infor-

mation which receives a causal interpretation is weighed more heavily in
judgment than information that is diagnostic. Tversky and Kahneman {1980]
correlate their results with previous research (Janis [1972]), (Jexrvis [1975))

indicating that humans overestimate the accuracy of uncertain models in pre-

_ dicting behavior, and, when confronted with evidence concerning the érro;s in

their models, would rather find a plausible explanation than revise their

models. These results aielparticdlarly relevant in multiperson decision-

making, where the interactions among decisionmakers force each decisionmaker

to develqﬁ internal models of the other decisionmakers.

A.2.2 Judgmental Heuristics and Blases

Recent research on probabilistic judgments has focused on the discovery
and description of heuristics, or éimple cognitivé strategies, that are em
ployed in the quantificétion of uncertainty. Much of this work has been per-

formed by Tversky and Kahneman [197i], [1973], [1974]L Their research centers

A-5

n‘.;',;

Loins

<

-~

]
]

LA
"

";
e

;{*..
v *
L

APy VY
4.1’“ 'f'
NN

&

'

s
{ ]
A
iy

"
Lol MM

Fﬁﬁf
l. l. ),
At

P
_Y‘r‘.'- )
By

A b
RN,
Pl

KA

PR

::%5

L
)
.

v
+
&3

7
'

th LA e 2K gl

» * r »
PRIt
_ N
i .

X
»id

Wy

dot ¥ ’
O VSR AW

a &
5]

Nt
e
)

o N
00,
N
)

T

>




on the determination of how people evaluate uncertainty rather than how well

they evaluate it. Tversky and Kahneman demonstrated, qualitatively, that
three judgmental heuristics -'tepresentativeness, availabilify, ad justment and
anchotiﬁg - determine probabilistic judgments in a variety of tasks. These
qualitative findings are potentiaily useful in the development of a (as yet

elusive) quantitative, descriptive theory of judgment.

1. REPRESENTATIVENESS HYPOTHESES

Tversky and Kahneman [1972] hypothesized that people evaiuata the probz—
bility of ;n eveﬂt on the basis of the degree of similarity between the evenﬁ
and the evideﬁcc they have examined. If the degree of similarity is high,
then the probability of the event is Judged to bg high. It was demonstrated:
thac the ;epresentativeness Lauristic can explain people's intuitive predic-
tions that were at variance with éhe rormative judgments. This was accom-
plishedvby showing the insensitivity of the representativgness,heuriatic to
severél normatively 1mportani factors of judgment, viz.,. the representative-
ness'heuristic is liable to.be used when the general properties of'even:s are

emphasized.

11. AVAILABILITY HEURiSTIC

With this heuristic, people evaluate thg probability of an eveat on the
basis of the ease with which instances or occurances can be recalled or imag-
ined. Availability is a valid cue for tﬁe assessment of probahility because,
in general, insténces‘of more frequént evente are recalied more easily than
the instances of lessvftequent events. However, availability is also affected
by other factors unrelated to ptobabilitf. Congequenfly, availability heuris-

tic results have been used in systematic biases, some of which follow:
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(1)

(2)

3)

(4)

It is ata:ed that the availability heuriatic 15 vsed when events are thought

Biases due to retrievability of instances: an event whose
instances are easily recalled will appear more frequently
than an event of equal probability (or frequently) whose
instances are less easily recalled.

Biases due to the effectiveness of a search set: In tasks
requiring the estimates of the relative frequencies of
words, the availability heuristic leads to a judgment that
the frequency of occurrence of abstract words (e.g., love
in love stories) is much higher than the concrete words
(e.g., door)

Biases of imaginability: in tasks in which one must
assess the frequency of an event whose instances are not
stored in memory, one may generate the instances according
to an algorithm or a rule. The easé with which one cun
generate instances forms the basis for probability or fre-
quency assessment. Depending on the nature of the rula,
this mode of probability assessment may lead to serious
biases.

Illusory corrclation: The probability of how frequently
two events co-occur 1s related to the assoclative bord
between them. Strong associates will be judged to have -
occured frequently together.

of in terms of specific instances.

141,

ADJUSTMENT AND ANCHORING

With this heuristic, an initial valce or anchor is used as a first

approximation to the judgment.

to the information provided.

demonstrated that anchioring could explaiﬁ people's judgment of the probabili- '

ties of conjunctive and disjunctive events and their assessment of the vari-

"insufficient. Even payoffs for accufacy did not reduce this effect.

ability of prcbability distributions.

Studies of decisions under risk indicate that people tend to overestimate

The initlal value is then adjusted according

Typically, these adjustments are imperfect and

It was

the probability of conjunctive events and underestimate the probability of

T R RO N T N N Sl S B O TS IR I ' oy




disjunctive events. With regard to the variability of probability distribu-

tions, several investigators found that subjects state mcre narrow cdnfldence
intervals than are justified by the evidence presented ﬁo them. Edwards
{1975]) noted that this peculiar’ty is dependent entirely on tbe format of
questiqns. |

A comprehensive review of ﬁeuristics in probabilistic j+dgment has been
provided .by Slovi~«, Fishoff ana Lichtenstein [1977]. Although the evidénce
guggests that he.sistics are employed in the assessment of uncertainty, ghe
specific heuristic selected, the way it is used, and the quality of judgment
it provides, are all highly problem dependent. Thercfore, heuristics way be
thoughf of as explanatory psychole ,ical processes of human probabilistic

Judgment and cannot be regarded as a general theory of judgment.

A.3 EﬁPIRICAL RESEARCH IN UTILITY THEORY
As stated in Machina's survey [1983], the theoratical underpinnings of

single person decsion theory under uncertainty are based on the expected

utility‘hypothesis of individuar‘behavior. This hypothesis essentially states

that, when faced with alternative risky prospects over a set of outcomes, a
rational deéiéiéhmaker will always choose a prospect shich ylelds the highest
expectation of some utility function defined over the set of outcomes. This
gtilit} function, often called a Von Neumann-Mcrgenstern utility function,
rep;eseﬁts the preference of individuals over the different outcomes.

As noted i{n Fishburn [1982], the existence of Von Neumann-Morzenstern
utility functicn and the validity of the exﬁected utility hypothesis follow

from some variations of the following three axioms:’
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(1) Transitivity of preferences over prospects; {.e., {f
pro. pect A is weakly preferred to prospect 3, and prospect
"B is weakly preferred to prospect C, then prospect A is
veakly preferred to prospect C.
(2) . Continuity of preferences are prospects; i.e., 1f two
sequences of prospects An, B, are such that A, is weakly
preferred to B,, and A,, B, converge to A, B respectively
(in the topology of weak convergence), then A is weakly
preferred to B.
(3) Independence of preferences over common alternatives;
f.e., 1f A i8 weakly preferred to B, then, :lor any C, aund
any 0< acl, aA+ (l-a) C is weakly preferred tov aB+(l-a)C.
These axioms appear to be simple conditions which the prefesrences of nnj
rational decisionmaker should!satisfy. Hence, empirical results concerning
the validity of these axioms have been limited. As Machina states: “Unfortu-
nately, though no doubtvdue'{n part to the widely held belief in the inherent
frationality' of the expected utility axioms and in. part to the tremendous
success of the theoretical developments during thls period, the last few
decades have seen nowhere near the amount of empirical estimation and testing
by economists that such a widely used model of behavior ought to have re-
ceived.” 1In this section, we will overview some of the available results on
.empirical research in utility theory.

.One of the first empirical studies concerned the risk behavior of indi-
viduals, and their desire both to participate in high-stakes risk-seekiﬁg
lotteries, and risk-averse Insurance purchases. Friedman and Savage [1948]
postulated that the utility function should be a functfon that 1is concave,
“locally risk averse”, about low wealth levels, and convex (risk seeking) at
high wealth levels. Hence, an individual whose curreht wealth position was
near the inflection point would indeed purchase both insurance against losses
and lottery tickets offering a small chance of large gains, This utility.

function implies two other commonly observed aspects of findividual preferences
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over uncertain prospects. First, individuals prefer lncreases in risk in the
upper tails of already random wealth distributions over risk increases in the
lower tails of such distributions. Second, individuals prefer distributions
with large right tails over large ief: tails (Kraus and Litzenbefger [1976]},
Scott sn& Horvath [1980]).
There is‘evidence to suggest that the Friedman-Savage characterization

of the utility functions (risk—aver?e over biases, riék—seeking over gains)

is incomplete. 'Among others, Hﬁrshey and Schoemaker [1980a], [1980b} and
Kahneman and Tv;rsky (1979) have found both risk-averse and risk-seeking behav-
ior in loss -ituatioﬁs. Kahoneman and Tyersky {1979]) attribute this observed
behavior to nonlinearities in the probabilities. Hershey aﬁd Schoemaker
{1980a]) also found that problem repregentatiops affectéd the decisionmaking
behavior. The differences in behavior introduced by probien representation
'were obsarved in nany other studies (Slovic [196931. Schoemaker and Kunreuther
[{1979], Tversky and Kahneman [1981], Kahneman and Tversky [1982)) and led to
the theory of "framing,” where the mental point for defining what is a gain
versus what is a loss depeﬁds on the specific wording of the decision problén.

There have been a number of empiricsl studies to test the validity of the

axioms of expected utility tﬁeoty. The most critical of these axioms is the
independence axiom. As nofed in Fishburn [1982] the independence axiom s  the
primary normative assertion of expected utility theory, because it restricts
the expected dtiliiy to be a linear functional pf the probability distribution
over.the set of ;utcomesﬂ However, examples such as Allais’ paradqx [1953]
ﬁave produced evidence that this axiom is violated often (Allals ana Hagen
{1979], Raiffa [1968], Slovic and Tversky [1974), Kahneman and Tversky [1979],

'MacCrimmon and Larsson [1979]).




The assumption of transitive preferences has also been tested empiri-
cally. Early studies in utility theory (Arrow [1951]) indicated that in many
choice situations, preferances were not transitive. Empirical reiearch by
Edwards [1954], Weinstein 11968] and Tversky [1969] have produced examples
of intransitive preferences Qmong alternatives. In subsequent research,
Lichtenstein and Slovic [1973] have found that, when faced with a direct
choice of prospects A and B, decisionmakers prefer A to B even though they
assign a h;gher certainty equivalent value to B than to A.

Another systematic violation of the expected utility hypothesis arises in
the context of cﬁoice. Specifically, th; expected utility hypothesis predicts
that the prospect which maximizes expected utility vill always be selected.
However, when repeategly confronted with the same pé;r of prospects, worded in
the same manner, individuélsAwiil'ﬁot always make the same choice. The en;ly
results of Mosteller and Nogee [1951] established that the indl;tdual': choice
probabilities were continuous, monotonoie functions of the diffgrentes in the
expected utilities of the proépects. Explicit models of ranéomized choice
have been proposed by Luce [1959] and Fishburn'(1976]. [1978] among others.

At a more fgndanental level, the expected utility hypothesis postulates
the existence of probabilities vhich obey the standard calculus (Savage
[1954)).. Hovever,‘Ellsberg's paradox (Ellsberg [1961]) demonstrates that
ratignal'décisonmakers may weigh the alté:natives vitﬁ scale factors which do
not obey the laws qf probability. Ellsberg's paradox has been verified exper;
imentally by MacCrimmon {1965], Slovic and Tvérsky (1974], and MacCrimmon and
Lérsgon {1979}. Plausible explanationsufor this behavior have becn‘offered
by Arrow and Hurwicz [1972] in terms of maxmin choices instead of maximum

expécted utility.
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A.4 éONCLUSION‘

This appendix has provided a brief overview of some results available
concerﬁing human decisionmaking. The focus has been to ctudy-éesu{tl which
indicate that the Qtandatd normative theéries such as probability theory and

utility theory fall short of describing observed decisionmaking behavior. The

rest of the research ir this report has been motivated by the existence of

these differences.
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ASYMPTOTIC AGREEMENT IN DISTRIBUTED ESTIMATION WITH INCONSISTENT BELIEFS

1. INTRODUCTION

Coqsider two agents, 1 and 2, who wish to estimate the same random vari-
"able x. Initially agent 1 (i=1,2) observes éhe_variable yl (i=1,2). Based on
his observation Agent 1(2) generates an estimate_;l (;2) which he.sends to
Agent 2(1). . It is assumed that the message is received without any distor-
tion. Each time an agent receives a message he recomputes a an estimate,
based on the original observation’ and the messages received byvthe other
agent up until that time, which he then transmits to the other ;gent. Several
questions related to the evolution of these sequences of estimates arise:
Will an agent settle‘on a final estimate? Will the estimazes of thé two
agents eventually agree?

A substantial effort has been recently devoted to the problem of reaching

a consensus of opinion among several decisionmakers [1]-[5]**

« The cru;ial as-
sunption in [1]-]|5] 1is the following; All agents are assumed to be Bayesian.
Agént 1's view of the world is reprgsented by an a priori distribution pl on
the spéce of “primitive” random variables x, yi, and pi is the same for all

agents. Under this assumption the conditions under which asymptotic agreement

is achieved are investigaied in [1]-[5]. A major result reported in [3] is

*We restrict attention to the case where each agent takes one measurement
without any loss of generality; the case where the agents take noise measure-
ments and communicate simultaneously can be analyzed in a similar fashion.

**References are indicated by numbers in square brackets, the list appears .at
the end of the main body of this report. '
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the following: {if the messages exchanged aﬁong the agents are the conditional
expectations of the random variable x then the agents agree asymptotically.

In this report w consider two Dayesian agents who have different views -

of the world and exchange their conditional expectations of the random vari- ﬁ:§§§
" able x. We show that asymptotically the two agents either agree or they NN

realize that they have different models and stop communicating any further.
Agreement or disagreement depend on ;he order of communication. '_ SRty
, The remainder of this report is organized as follcws: The model is. p&:k;
presented in Section 2; the process o( expectation formeztion is de;cribed in L%&aﬁ
Section 3; the question of convergence of’the estimates an& of asynptoti? ' E§%§¥

agreement are investigated in Section 4. Conciusions ire presented in Sec- Q)

tion S. * | l . ‘ E‘ﬂf&:
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2. THE MODEL

We consider two agents, 1l and 2, and a random variable x which each agent

wishes io estimate. We make the following assumptions:

(Al) Both agents are Bayesian. Agent 1's (i=1,Z) view of the world is repre-
sented by an a priori distriburion Pi (i=1,2) on the space of the “primi-
tive” randon variables X,YI,YZ, whose sample space is 2. Agent i assuaes

that the other agent's distribution is also PL, Ve do not assume Pl=p2,

(A2) El]x|<¢= 1=1,2 where E! denotes the expectation with respect to the proba-

bility wmeasure p! induced by Pi,

(A3) Each agent takes only one measurement yi (1=1,2) at time t=o*, and com-

putes the conditional expectation x! of the random variable.x based on
his measurement. The spaces i (1=1,2) are finite.

(A4) At time t=2K-1 (2K), K=1,2,+++, agent 1(2) sends the message ;i (;i) to

~agent 2(1). Thus, messages are transmitted at t=1,2, iﬁ the following

. .o t1 271222102
order: xl,xl,gz,xz,x3,x3,

The messages'x; (1=1,2, k=1,2,+++) of each agent are the expectations of x
based on the original observation Yi and the wessages received in the past by

the other agent.

*The problem where the agents take more measurements and communicate siamul-
taneously can be treated similarly by considering the whole sample path
ylt 4 (yi(l),yi(Z),'°',y1(t)) at any time t.
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Under asspmptlon; (Al)-(A4) we study the following proﬁlems:

(1) will the'estinates oflthe two agents eventuaily converge?

(2) 1If :hey converge will they agree? .

The model proposed. in this report‘is similar to that of [3}. The only
dif lerence begween the two models lies in (Al). In:[3] all agents are
Bayesian with the same view of the world; in the model proposed in this’report
the agents are Baye.ian but have different views of the world (different
‘Pi's). ﬁoreo#er each agent supposésvthat the other agént's a priori distribu-
tion 1s the same as his. Thus, the agents are unaware that they ﬁave dif-
ferent views of the world.” Becauseiof (Al) the same message has diffevent

meanings for its sender and receiver: each agent inturprets his data in terms
of his own model and generates the conditional expectaiion according to his
prior distribution P1, The 1nterpretationrof the data and the message

generation by each agent are considered in the next section.
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*The case where the agents are aware that they have different views of the f;‘fj
world reduces to the model of [3]; the agents can first agree on an a priori sjn -
distribution P by negotiation (according to the method of [6]) and then :afr?
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proceed to solve the estimation problem.
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3. DATA INTERPRETATION - MESSAGE GENERATION

In making his estimate x;.»agent i undertakes two logically distinct
operations. First, he interprets his current data (his original observation

and the received messages) in some consistent manner. This interprgtation

converts raw data into structured information. Secondly, based on the

interpreted data an agent generates an estimate x: of r, vhich he transmits to
the other agent. Thus, a sequence of messages x: xf x; xg x; xg"' is

generated as follows:

At t=]1, 1's estimate 1is

1 1 1 '
x, = E {x|¥"} pl a.s. (3-1)

(where Eindenotes the expectation with respact to the probability measure p1

induced by the distribution P1 on ). The message xi is transoitted to
agent 2. Agent 2 interprets the message x;';s the realization of the randoum
variable

2

~1 2 1
x, = E (x]Y") p° a.s. (3-2)

That 1is, according to agent 2 the realization ;l of Ylis such that

S1_sl 2, sl 2
x, = x =E (x[z ) p a.s. (3-3)
At t=2, 2's estimate {is
"2 2 2 ~1 2
. E“(x]Y ,xl) P a.s. _ (3-4)
5
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and this estimate is sent to 1 who interprets it as the realization of the

randon variable

~2 1 2 1 1
x; = E (xIY ’ xl) p a.s. . (3-5)
~ N |
In other words, according to 1 the data 12 (the realization of Y2) and x] {is
such that
T2 =2 El ( |~2 “1 1
x) = x x|y .x;) P a.s. (3-6)

' .2 - .
In general, when agent 1 receives a message xy he interprets it as

~2 *2

- - zl( I"z “1 *1 coe .l) 1
xk xk x‘z ,xl.xz.‘ ,xk P a.s. , (3_7)
and then he generates
-1 1 4.1 ~2 2 =2, 1
X4 = E (x[z ,xl.xz.-°-,xk)' p a.s. (3-8)
vhich he transmits to agent 2.
! .
| Agent 2 interprets this message as
o SRt SR PHNTo) Bk ok et SOt N ,
xkq.x ﬂ"‘l x.{ gxlﬁ.xz»XB- 'xk p a.s. (3-9)
and then transmits
*2 2 2 ~1 ~1 2
xk.’.l - F (X'Z ’xl'...’xk+l} P a.8. (3_]0)

fo agent 1.
Equatfions 3-1 througﬁ 3-10 describe the rules according to whirh the
“1 %2 "1 "2

scquence of messages Xl.ll,xz.xz_... ts generated. These rules are well-

defined because of assumption A2.




4. CONVERGENCE AGREEMENT

”~

In this section we pr6v¢ that under assumptions Al through A4 and the
rules by which me#sages are generated, one of two possible events occurs:
Either _ | S . | -

1. The agent;' estinate!'converge and the agents agree asyuhtotically,
or

2. The agents realize that they have differcnt models and stop coar
municating ahy further. |

To prove the iesult we fe;exanihe the "data interpretation® which is one
of the two distinct operaticns that each agent undertakes in making his
estimate. |

At first we let r denote the realization of the random variable r.

1

When agent 2 receives message x: he figures that Y has rzalized a value

;l'such‘that

. 2 3 -z .z '.0.2 - ‘l - l ~2 ~2 LN X3 ~2 ‘-
Ef(xly expaxgeteoxgy) =%y 2 By uxpxoatenxg ) V1<K (4-1)

Simflarly, when agent | receives message x: he figures that Yz has realized ;2

such that

1, ~2-1~1 * -2 - Lo ‘
E (x'zz‘x:)-x-zp“ox;) = xf = Ez(xlz‘l,x:.-.-_x:) ¥i ¢ K (A-z)
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' ) ! l . .
For each observation value Y & (Y;,Y2) let Y4(Y) dencte the set of all ._’l_l
that satisfy Eq. 4-1) and let lf(l) be the set of all 12 that satisfy Eq. 4-2.

‘Obviously these sets cannot increase, i.e.,

yi (Y yi (y) vk 1=1,2 4=
oo 11,2 | (4-3)

Thus, as k increases one of two cases can occur: Either

Case 1
By v, m | | (4-8)
or
Case 2 : '
At some step &
B4, mler2 o (4-5)

' We shall analyze each case separately.

Case 1
When Eq. 4-4 is true we shall prove that the agents' estimates converge
and the agents agree asymptotically.

To prove this result we first define the following o-fields:

YR et Wt N S S SR -

c‘ c (X‘, xz. » xi. xln xz’ ’ xi—l) (4"6)

28 1yt =2 ~2 . ~2

PR (YL X e ) (4-7)
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&2 8.o) (), R, .ol 2 3232,

2
Gi Xl. xzp % xi. xlo xzt %y xi) (4-8)
25 1,2 %1 21 1 T
Fpoon (Y5 %,y v x) (4-9)
GZ A °2 ~2 ;2 ;2 ;l ;l ven ;l
1 Xlo 2° v Xy Xpe X5 » Xy (6-10).
248 2,2 ~1 =l o o~1 . ,
Fj =0 (¥°, X|» Xgs *T%y X, _ | - (4-11)
Sl A o252 2, 2 L3 R 3 .
Cp =0 Uxps X%t Xy )o Xpo Xp0™%%0 Xy (4-12)
sl A 2,1 %2 2 ~2
Fi =0 (Y. b4 xl' xz' 4 xi"’l) (4-13)
P 1 .21 21 ~2 ~2
(:l =G vo (xll. Xgr "% X1 X5, "') (4-14)
2 a1 2,%2 2 . =1.~l
G =G =~a (xl, Xys *0%s X5 Xy, eee) (4-15)
1 2 .1

The interpretation of G,, G,, F_, Yf is straightforward. The o~field cf (C:)

i i
represents the view of agent 1(2) about the,info;mation available to

agent 2(1) due to the messages generated and exchanged up until time 2i(2i-1),

- -

The o-fields Fi’ Ff have a similar interpretation. We can now prove the

following results:

Lemma 4~}
“1 ] ! ~2 22 1 =2 2 2 ~1 21 2
{xg» 6 p I, x(» G» P ?. {xi. 6. ph {x. 6. p }

are uniformly interable martingales.
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Proof

By definitfion
;11- Ej{xlyi} pj a.s. 'i. j-l,2 (4'16).

and

¢l e v, g (4-17)

Because of Eqs. 3~11 and 3~12 and Theorem I.8.1 of [7] it follows that

' xi - g {xlci} pj a.s vi, j=1,2 ' (4-18)
~2 %2 1 ~1 41 2 : '
The proof that {xi, Gi. P }, {x » Gi, P } are uniformly integrable martingales

1; similar. . ‘ ‘ . o

Theozsenm 4.1

The estimates x;. ;:.i(xi. ;i) of agent 1(2) converge pl (pz) a.s.

Proof

Follows fr~ lemma 4.1 and the martingale convergence Theorem VII.4.1 of

[7]. ) ' ' o
Let us denote by |
“1 1 1 1
x, = E'{x|c_} p aus. (4-19)
~2 1y e2y 1 ' '
x_=E {x]G.} P a.s. (4-20)
~2 21 .2 2
x_ = E [xlc'} P~ a.s. , (4-21)
~2 _ 2, %1 2
x_ = E {X'C-} p a.s. (4-22)
10
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1

the limicts of the estimates of the two agents. Then, we have the follouing

result.

iemma 4,2
pr {x} = %% =1 and P2 [ =%} =1 (4-23)

Proof ‘ .

Equation 4-23 follows from Eqé. 4-19 through 4-22 and 4-14 and 4-15. O

So' far we have showm that each agent's estimates converge and moreover
each agent's estimate coincides asymptotically with his interpretation of the
other agent's estimate within the terms of his own view ot the world. The

next theorem shows that asymptotically the two agents agree.

Theorem 4.2

Under Assumptions Al through A4 and 4~4, the estimates of the two agents

agree asymptotically.

Proof

‘When Eq. 4-4 is true, Eqs. 4-1 and 4-2 hold for all k, consequently

1 ~1
x_ = x,
and (4-24) -
*2_ ~2 ' ' '
x- = X.
Agreement then follows from Eq. 6—26 and lemma 4.2 ' o

The investigation of Case 1 {s now complete.
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Case 2 : ' o

The following result is true in this case. -

Theoren 4.3 ‘ ' ' [ﬂ

‘r,\

If Eq. 4-5 is true the agents realize tﬁat they have different models and 3.

etop communicating any further. . ' j

&

B

L™

froet

If Eq. 4-5 occurs for agent i at some time I. then agent 1 ant assvne %%
that the sequence {3; (}_)};_l is 'inpossisle' (i.e., 3n event of zero ;%
probability), or more reasonably agent i must assume that the two models pl Ez
;nd p? are different. Thus, further communication is no:‘necessary {unless i%

.
a (.I

the agent is willing to ;odify his model and reintérpret the'sequeﬁce of hi
received messages). -
; e

».j:f

Remark Py
—_—— e

If after Xi (Y) = ¢ agent i is willing to modify his aodel (his prior
probability), then it can be shown, using the results of [6] and [3], that
eventually assumptotic agreement can' be acﬁieved. The situation'wbere agents
are éiiling to modify their beliefs, after they receive an “impozsible”
sequence of messages accoréing to their initial view of the poild, is similar
to that considered by Kreps and Wilson [8] who study dynamic games of perfect
recall and determine “sequential equilibria™ for these games. In Kreps and
Wilson {8] the agents modify their beliefs (expressed by a2 behavioral strategy
and a probability measure on the elements of every information set) whenever
aﬁ information set of measure zero 1§ reached {n the game.

The investigation of Case 2 is now complete.




The results obtained so far shov that the éommunlcating agents either
agree or realize that they have different models and terminate their communi-
cation. The example that follows shows that agreement may depend on the order

of communication.

Example 4,1
Let @ = [0,2] x [0,3] (Fig. 4-1). Assume that‘Pl is the lebesgue

measure (normalized to give P(ﬂ)fl); and P2 i{s such that
P2(C)) = 2/12, P¥(C) = 3/12, P2(C3) = 7/12 .

The distribution on each of C}, Cz, C3 is uniforn. Agen;s‘i and 2 try to

estimate 1(A) where A is_shown in Figure 4-1. At t=0, agent 1 observes

{1(B1), 1(B2)} and agent 2 observes [l(cl),ll(Cz). 1(C3)}. Let weB} N Cj.

Cy

B} By

L - €2
Tjaunir|

S 111 i e
2 E

Figure 4~1. Parameters of Example 4.1

Consider first the situation where agent ! sends his estimate xi to

'agedt 2 at times t=1,3,5,°++, and agent 2 sends his estimate xz

N to agent 1 at

times t=2,4,6, ",

Then x:(u) = Elll(A)ll(Bl)} = 1/2, . Agent 2 receives 1/2 and interprets

it as follows. He believes agent 1 observed l(BZ) because only then
2 ' S PO
E {l(A)Il(BZ)} =12 s xe)
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Agent 2 initially observes 1(C3). Consequently after he receives x:(w) his No
. ' S,
new estimate is 8::"

e,
f

:
Bz
ol

- 2 !
x| (w) = E {1(,5)]1(52 N c3)} - 3/4 .

”
m

This estimate is transmitted to agent | uho iInterprets it as follows: He

concludes that agent 2 observed 1(Cz) because only then E!{1(A)|1(B} N ¢2)} =

hdt
LN
L

‘, -
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3/4., Then, agent 1l's estimate is

Y." s o

;;(u) - s‘{ua)n(sl N ci)} - 3/4

and this estimate is transmitted to agent 2. From that point on further

comnunication does not ¢onvey any more information, so the agents':estima:es ;Jag
agree and Ea;
Pk

Xy

1 “2 7('-"-':

x =x = 3/4 . ;?dk
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Consider now the situation where agent 2 sends his estimate xi to agent 1
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at times t=1,3,5,*** and agent | sends his estimate xt to agent 2 at times
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t=2,4,6,°°+ . 2gain, initially agent 1 observes I(Bl) and agent 2 observes

)

l(C3). Hence
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Agent 2 receives xf(w) and' interprets it as follows: He believes that agent 2
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observed either l(Cz) or l(CJ) because only then
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Then agent '| foras he new estimate

Nl-—

- 1 1 1
x:(u): -5 |5'{1(m)|1(nl N cz)} +5E {l(A)Il(Bl N c3)} =

wvhich he communicates to agent 2.

Agent 2 can not interpret consistently this message iur th; following reason:
He knows that agent ! observed either l(Bl) or 1(5;). He also knows that

agent 1 knows that agent 2 observed either.l(cz) or l(CB); Hence 1f agént 1
observed l(Bl) he ;hould transmit to agent 2 the—message ;:(u) = 0.4; on the
other hand if agent ! observed l(lz) he should transmit to agent 2 the'nessagev
;:(u) = 0.6. The message ;:(u) = 0.5 h;s a zero probability acco?ding to

agent 2's view of the world, consequenfly. agent 2 realizes that he does not

have the same model as adent | and any further communication is not necessary.(Q
Example 4.1 shows that it is not possible to partition the space Y of

observations Y 4 (_Y_'_l ,!_2) into sets Y¢ YD such that

ey YD = y

( ‘ e N YD -y

and so that'if_z € Y© agr;emen: is always achieved whereas if Y e.YD the
Iagenis reaiize.eventually that they have differeat mﬁdeis.

Finally, we restrict attention to the Gaussian case. By this we meaﬁ
that (1) che meésurements‘are jbintly Gaussian,.(ii) Assumptions Al through A4

hold. Theﬁ we have the following result:

Leoma 4.3

For the Gaussian case agreement is always achieved when the order of com- '
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munication is fixed. However, when the two agents communicate simultaneously,
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then agreement occurs with zero probability.
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When the order of communication is fixed agreement follcws from Lemma 3
of [3] and the fact that with only one measurement and two agents having thé -
same view of the world it takes only one communication to reconstruct the
centr%lized estimate.

When the agents communicate simultanecusly then, in view of the results
of [3]), after one communicatioh each agent believes that he has reconstructed

the centralized estimate (according to his own dBdel),'thus the two agents do

not communicate any further and agreement occurs with zero probability.
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5. CONCLUSIONS

This report extended the results of [3] to the case where agents with
different beliefs (different prior probabilities) exchange information.

The process of expeétation formation for such systems was described, and

1t was shown that agreement depends upon the order of communication betwéen

the agents.
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Consensus in Distribuicd Estimation’ -
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Demosibenis Teoeketzis _ Pravin Varaiya
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: . ABSTRACT

A team must agree oo 3 common decision to minimize the erpected cost.
Different team members bave different observations relating o the ‘state of the
world', and they may also bave different prior beliefs. To reach a consensus
they exchange tentative decisions based on their curreni information. Two ques-
tions are discussed: When do the individual estimates converge! If they con-

verge, will 3 consensus be reached!?
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1. INTRODUCTION
" A team or committee of N people, indexed ¢ v 1,...,N, must agree on a ?om-
moa decision u'w be selected frow a pre-specified set U 30 as to minimize the cost’
vJ(u,u) | (1)

where J is a real valued function of the ‘state of the wor!d' w € N, and the dccisionl .
loitially, differeat people bave different information relating to w. This is modeled by

stipulating that person i observes the value of the random variable Y; = Y,;(w). Evcry;

"onoe knows that i knows Y;, although 5, 5 9% i, does not know wbat the value of Y,

actually is. Everyone knows the function J.

Each persou bas a pricr beliel concerniag w. We stipulate that s prior belief is
summarized by the probability distribution P* on (Q.F) where F is cbe o-field of events.
¥ Plam-- =PV weaay th_a; the beliels are consrstent; othernise t.'he_v are incon-
sistent,

Since Iini'.éally different p’éople have different information, snd also because their
beli=fs may bé inconsistent, their estimates of the best decision will alﬁo b fiiﬂcrcnt. To
arrive at a consensus decision it is nec?ssary for them to si;br: information. ‘Wc suppose

that this information is shared by means of the following procedure.

Cousider person s. Ia the first round he makes an estimate y;(1) which is based on

his initial data Y;, and he communicates this estimate to some or all of the other

members. By the timic ¢+ makes his serozd estimate, he wil! bave received the sstimates

of some of the oiters. More generally, denote by D, (f-1) the miceeages recsived by ¢
from tis sthers before ¢ makes his t* esiimate u;(t). That estimatc will be based on
Y; and D;(t-1). We assume that ¢ communicates all his cstimates ¢o a fixed set of the

other people, and that there is a2 message transmission delay of one time unit.




i [oomitele iyt dneck

Sk
)

Our aim is to discuss two questions: Will each person’s estimate coaverge as
t — oo! If the individual estimates ccuverge, will they reach a common limit! To for-
mulate these questions mathewatically, we need to specily bow cach person estimates

the best dg:cision based oa the data available to him. This is done in Section 2. Once

~ this is dooe, it turns out that the answers depend crucially upon whether the prior

belicfs are consistent or inconsistent. The consistent case is considered in Section 3, and
the inconsistent case in Section 4. Section § outlines some directions for further’

rescarch,

2. ESTIMATION SCHEMES
Sev@nl diiferent estimation schemes have been considered in the literatu. -

Borkar and Varaiya [2] consider the situatica where the committee wants to esti-
mate a random variable X, and they sluppose that the ¢ estimate m'ade by i, -u‘(l), is
th~ con‘ditional mean of X given the available data, ie.,: ‘

w(0) = E¥ (X Y:, Dit-1)} - @
Here E* dcucv!es expectation with respect to P'. We will see later that the right hand |
side of (2) has to be i'nwprebcd carefully when tﬁc beliefs are inconsistent, For the
moment observe that the etimate giveﬁ by (2) is also the decision that minimizes the
(expected valus of ilic) cosi fuzetion

Nw,u) == | X(w}-uf

when the izformation available is {V;, D;(t-1})}. Aumana {1}, and Geanakoplos and

Polemarchakis [4] consider the situation in which the group wants to estimate the proba-

biiiiy that a. particular event F € F bhas occurred. This is a special case of (2) with
X == 1(F). The sct 0 of ali poasible states is finite is [I] and [4]. Tsitsiklis and Athans

{7j consider the situation described in the introduction. Sebenius and Geanakoplos [5]
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wi() = E{X] Y,(s-1)} . , (4).

Let ¥, (o00) := VY, (t). Sioce Y,(1) is a0 incieasing sequence, it follows from the mar-
X T = i N
tingale convergence theorem that

w; (1) = v;(00) a.0.; u;(00) 1= E{X | ¥;(c0)} . C(s)

Thus the individual estimates do converge.
Next we investigate whetber the limiting estimates agree. Suppose i communicates
his estimates to j. Then v,(f) is ¥;(¢+1)}-measurable. From (5) it follows that y;(o0) is

Y, (co)measurable, and so,

/

w;(o0) = E{y; ()| Yi{eo) ) Yi(o0)} . = (®)

Suppose there is a communication ring ¢y, ... ,i, == i,. This is 2 not necessarily
distinct sequence of persons such that 4 communicates his estimates to i;,,. Then,
according to (6), we must have

v, (co) =& {u,-m(co) | ¥y (c0) n Y. (o)}, ke=1,...,n, (7)
where ¢,y ;== ¢, U is quite easy to show [2, Lemma 2] that (7) implies

u'—‘-a---mu'.,

so that the asymptotic estimates of the members of » communication ring agree. This

suggests ihe main result of [2]: -

Theorem 1.

If the estimates of ¢ are gives by (2), then each pérson's estimate converges. More-
over, il everyone in the team is 3 member of the same communication ring then the lim-

iting estimates agree.

Proof:
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Tencketzis [8! show also that the agrecment condition for rings is satisficd by decision

rules which are optimal in the sense defined bclovj:

Proposition 1.

Suppose that d is a decisior rule such that o{d(F' )) C F' for all y-ﬁclds F CF
Theo d satisfics the agreement condition for rings if and only if there is a partial order-
ing < of the set of functions {d(F" )_F_' C F} such that d(F" ) is the maximum ele-

ment of ((G): G C F, a(d(g)) C F' } with respect to <.
Proof:
See Appeadix C

Io many cases as in [2], [7] the partial order relation is defined in terms of a scalar
cost function. The following proposition proves that decision rules defined by such cost
functions satisly the agreeraent condition for rings, provided that the decision includes a

tie-breaking rule of the cost function h2s more than one minima.
Proposition 2.

Suppose that the decision functions take values in a set U. Let L be a real-valued func-
tional of F-measurable decision functions § : 1 — U. For cacb F' let D(F' ) be the set

of F' -measurable decision functions § such that L(.v6) < L(6' ) for all measurable

& : 01 — U. Assume that U is partially ordered by <' and that for,each F' , there is

3 6§ € D(F' ) such thal & € D(F' ) implies §' (w) <' §w) for all w € . The decision

rule ¢(F' ) which assigns this § € D(F" ) to F' satisfies the agreement condition for

* rings.

Proof:
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3.3. COMMON KNOWLEDGE

The main feature of the estimation schemes presented in {1}, {2], [4], [8] is the fol-

lowing:

If all tecam members 1sc the same decision rule, if everyone in the team is 3 member

- of the same communication ring and if common knowledge decisions agree, then all team

members agree on the same decision. The common decision is the decision based oa the

ultinate common knowledge (common information) of the team members.

Thus, it apbcm appropriate w‘déﬁne common knowledge at this point, and to
show that the definitions of common information given in (1}, [2], [8], [9] are essentially

equivalent and lead to the same results.

Aumana [I] represents information by | a partition P onl the sample space Q.
Borkar-Varaiya (2} ax;d Washbuni-'[‘enekctzis (8] represent information by o-fields coa-
tained in F . It can be shown that these two representations are essentially equivalent.
The partition Pis a collection {Ey, Eqy -+ )of mutuallly disjoint events whose nnionv is

the whole sample space. To a partition P there corresponds a unique o-field £, namely

the o-field generated by the events in P. Each E, €P is an atom of F. If -

Py ={(E,, Ez, *++} and Py={G,, Gy, * } then one can define a third partition
Py which is the finest partition contained in P, and P, and is denoted by P, AP,. If
P, and P, corrcsp;)nd to the o-fields F, and £, then Py AP, correspends to Fy AF ..
Aumans [1] Idcﬁdcs an event E to be common knowledge to team members 1 and 2
(with inform;tion P, and P, respectively) at.' w if there is an atom Ce P, AP, such
that wE G C E. If F, and F, are the o-fields corresponding to P, and P, respective-
ly, then thev definitions of common knowledge at w given ia [2], [8), namely that there is

G €EF, AF,and w€ G C E, are equivalent to Aumann's defizition. Let us say that

{1
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the eveat £ is common knowledge to the team members 1 and 2 il it is common
knowlcdge.at cich w € E. Then E is common knowledge ';o 1 and 2 if and only if it be-

loogs to the o-ficld geaerated by P, AP, namely F, AF,.
Milgrom [9] characterizes common knowledge by

(1) #ui:ling with each event E another event K with the interpretation

Kg = {w€MN:E is common knowledge at w}

and

(it) considering the following four conditions:

(Cl)Kg C E

(€C2) V. w€Ke, ¥ i, ilw€EF;, F;, CKg

(C3) E, C E; => K¢, C K,

CO[V i Vwe s.irué Fi,F, € E| => E = K¢.

Condition (C1) asserts that an event £ is common knowledge only if it actually occurs.

Condition (C2) implies that if £ is common knowledge then every team member knows

- that £ is common knowledge. Conditions (Cl) and (C2) imply that £ is common

‘kanowledge only if E occurs, each team member knows £, each knows that all know E

and so on. Condition (C3) implies that wherever £, is common knowledge any logica!
consequerce of £, is also éoinmqn knowlcdgc. Condition (C4) asserts that public events
are common knowledge whcncvgr Lbe;y otcur. A public evcnt’is defined by the an-
tecedent in (C4); it is an event vﬁicb if it occﬁrs will be known to every team member.
Milgrom ([8]) shows that his characterization ‘of common knowledge is equivalent to

Aumaan's definition.
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mation in a way that can be stated succinctly using common koowledge: a contingeot al-
location [ is efficient if there is 50 other allocation v such that it is common knowledge
that all agents prefer f to v. Milgrom ({9)-[10]) used the idca of common knowledge to
analyze a rational expectations tradiug model. He showed that whean traders exchange 2
risky gecurity on ths basis of private ﬁafo?mation then they “agree w.di:agrce." (i.e., ;)o
trade takes place). Kreps, Milgrom, Robérts and \Ih’ilson (12 consi(f!cr ﬁgitc repetitions
_ of the well-known prisorers’ Jileﬁma gax;:e. A common observation in experiments in-
wvolving finite repetitions of the prisoners’ dilemma is that players do not always play the

single periol dominant strategies but instead achieve some measure of cooperation.

Kreps and his co-authors in {12] show that the lack of common knowledge about one or

both players’ options, motivation or behavior can explain the observed éoopcnﬁon.

4. INCONSISTENT BELIEFS:

The analysis is quite different when the beliefs are inconsistent. The discussion in '
~ this section is initially “ased on Teneketzis and Varaiya [6]. Then the results of [6] are

" extended to the case of a general decision rule d. To keep the notation simple assume -

there are only ‘two‘persobns, Alpha and Beta. Initially, Alpke observes the random vari-
able A and Liefs observes B. Both wish to estimate the random variable X. We also as-
sume that 0 is finite. The prior probabilities of Alpha and Beta are denoted P°, P?
respectively.

For t =1,2,-+- the t® estimate by ,lﬂpha (Bcla) is déno@ a, (A,). a, is the
conditional expectation of X givcn‘ the observations A,8y, . . . ,8y. After a, has been
calculated it is communicated to Beta whose t'* estimate is the condiiional expectation
of X given B, ay, ...,a,. Once §,; is evaluated it is communicated to Alpha who incor

porates it into the estimate o, and the procedure is repeated.
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To complete the specification we assume that the estimation procedures followed

by Alphe and Dcte are consistent with their own prior models. Tha. is, each assumes

the other’s model 10 be the same as bis own. Consider Alpha. When be reccives Beta’s

~ estimate B, ,, Alpha interprets it as if it were bzsed oo P ratber than on P?. Thus Al

phe assumes that Bela's estimate is a realization of the random variable

B =E°(X|B,oa,...,a00,).
Subsequently, Alpha calculates a,, ' '

8y lwm E. (X lA. i" e e 'i"l} .

Symmetrically, Bets interprets a, as

o e E’{X|A-ﬁu---.’ﬁc—l) '
and calculates 8, by ‘
B = E’(X|B &y ...,a).

There is a .more revealing description of the functiona! dependence of these esti-
mates. Suppose a particular realization & == (A, B) bas occurred. Since Alphs observes
A, be concludes that & € N = {(A, B)| A=A} and so bis lirst estimate equals

G, = E°(X|A=A) = E* (X |wENS).
Alpha transmits the number @, to Beta. Beta interprets it as a realization of the random
variable
61 - E’{X ' A) [
and so be infers that G € N ;= (w] 0)(w) = &, B = B}, and bis first estimate takes
the value

B, = EXX |wEn/) .

This value is communicated to Alpha.
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At the beginning of the t* round, Alphs starts with the inference © € 02, when
he reccives the estimate f,. He interprets it as a realization of the random variable
By = E°{X |8B.0y,... W)
and so Alphs concludes that W€ N := {w]w€ O, 5._.(:.:) = f,,). Hence Alpha's
t* estimate takes the value

& = E°(X|wEn?)

which is cunu;unicatéd to Bela. Whéreupon Bets interprets it as a realization of
a, = E(X|AB,...,.0u),
coocludes that G € Af :m= {w | w € 02, o,(w) = &} and evaluates bis t* estimate as

B, = E’X|wenf).

Thus, as expected, the uncertainty diminishes with each exchange, 053, C 0272,
n2, ca’ From th’e description above we also see that if for some k either
0 -= N or ﬂf,. - N1, th;n N2 =075, and Of = Q/f,, for ¢t > H'l.  Hence for

t > T (which cannot exceed the number of distinct elements in 1), 2 and O become

constant. These limit sets depend upon the realization w. Call them N°(w) and 0w

respectively.

There are two possiBilitiu. The first is that 1°(w) = ¢ and (18(w) = &. This
happens because at soﬁ:c stage the message ﬁ.., received’by Alpha is “impossi{l’)Il‘e:" there
is no © such that 5,_,(6) - ﬁ,_,; or.the message @, received by Befa is “impossible:”
there is no w such that a,(w) = a,. Alpha and Befa must realize that their prior

models are inconsistent, , Let f1; be the set of all realizations that lead to this outcome.
The second possibility is that N1.%(w) 5€ ¢ and NF(w) £ ¢. In thiscase for t > T
ihe estimates stop changing: ﬁ, (w) = i.(w), a(w) = aw), o,(w) = a.(w),

B (w) == f.{w). Since for every ¢, i, (w) = B;(w) and o, (w) = a(w), it follows that
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[

Bow) = Bw), as(w)=a-(w).

On the other hand, since i, and a, are based on the same model, namely P2, it follows
from Theorem 1 that ﬁ;.(w)= a.w). For the same reason a.(w) = f.(w). Thus if
we€E fll,, = - ("l, , there is agreement o’, (w) == Bi(w) for t > T. Itie worth emphoar:-
sng that this agreement need not be o r?ﬂcch'an of the conu‘a'lcncy of the two models P°,
P?. Rether agreement occurs because within cach écrcon'n model there is aufficient *'un-
certainty'’ to permit tI':c reconciliation of the other's messdges with his own obscrvation.
One might say that cgrccmcu; could result from two wrong erguments, We summanze

the preceding analysis as follows:

Theorem 3

The ‘set of events N1 decomposes into two disjoint subsets (1; and Q. After T ex-
changes, if w € f1; both a.gents realize their models are inconsistent, whereas if w € 02

the two estimates coincide.

The result is fragile. In particular, whether a realization w ends in agreement or in
impasse can depend upon the order of communication between Alpha.and Beta as
demonstrated by the following example:

.Examplé

Take 01 = [0,2] X [0,3], suppnse Alpha observes

A= {l(al)v X(G:))

aﬁ‘d Beta observes

B = {1()), 1(62). 16,)}

and suppose X is the indicator funclion of the shaded region as shown in figure 1. As

sume that w is eniformly distributed under #°, whereas under P#,
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PYb,) = 2/12, PYb,) = 3/12, P?b,)=1/12

and within each b;, w-is uniformly distributed. Suppose @ € o, N by and that Alphs

" commuaicates first. Then

. = E(X|wEs,) = 1/2

Beta ioterprets this as a realization of
;l o E(X1(a) 1(e2)) .
Since EXz|w€e,) = 5/12, E)(2|w€a,) = 1/2, upon learning that @, = 1/2, Beta con-
cludes that & € a,, and since he has observed that & € b his estimate is
B, = EXX|w € a, N by) = 3/4

Alphe interprets §, as a realization of E*(z|w€a,, B). Since

E*(z]lv€e N b)) = 1/2,

E°(z]u€a,n b)) = 3[4,

E*(z]v€ayn by) = 1/2,

Alpha concludes that w € e;Nb,, hence

:2 == E'(Xlwﬁalﬂbz) = 3/4 .

Evidently, By == fy = -+ = 3, = @y ==---=3/4 and there is agreement. (Note
that Alpha believes that w € a,Nb., Beta believes that T€a Nby, in fact WEa Nby.

Now suppose again that T€a,Nb gy, but this time Beta coramunicates first. Then

3: - E’(X]uﬁb,) =1/2
Since -
E*(X|wEb,) = 1/4,

E*(X|w€b,) = E* (X|wEby) = 1/2,

‘upon learning #; = 1/2, Alpha concludes that TEb ,Ub g, ther his estimate is

7, = E*(X|w€a,n(bU1by)) = 1/2 .

But Beta expects a; to take on the value
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Ef(X|w€a,n(bsUt,)) = 0.4

or

EA(X|w€a,n(b,Ub,)) =06 .
Thus cha concludes that the models are inconsistent.

The results of Teneketzis and Varaiya [6] can be extended to the case where the de-

‘

. cision rule is a general function d as in section'3.2. We discuss this case next.

Assume the same model as in Teneketzis and Varaiya [6] and suppose the estimates

‘

o and B, are generated by the decision rule d given the observations

A By By ... By aud B, ey, ay,...,0., respectively. Suppose the decision rule d sa-

tisfies the agreement condition:

‘

forall G,, G, C F, |
o{d(G,)) C G, C G, => dG,)=d(G.).

Under the assumptions above one can prove the following result:
Theorem 4.

If 0 is finite and the decision rule d satisfies the agreement coodition (15). then ei-

ther the estimates ¢ and # agree after a finite number of commpiciirns or Alphas and

'

Beta realire that their models are inconsistent.
Proof:
See Appendix F.
As pointed out in the discussion previously the in"(lzstigation ;)t' convergence and
agreement of the estimates can proceed in téo steps: |

1. Determine what each team member's ni.odel predicts about the evolution and

the outcome of the estimation process.
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2. Examine bow these predictions compare with what actually bappens during the

estimation process.

For finite Q, the result of theorem 4 is true for rules that obey the agreement con-
dition for a very simple reasen, If a team member's view of the world is consistent with
reality, (hen agreement must result after a finite number of communications because this

is what'is predicted by the team member's model; anything else would be inconsistent.

6. CONCLUDING REMARKS

Recall tse discussion in Section 3.1.and 3.2. There a consensus is reached via .a se-
.qucnce of eiclhan;a of tentative decisions. The information available to a person in-
creases with each message exchange and the limiting consensus .decision is based on the
information common to all in .!.he sense that d,(c0) == - - - == ¢, (00) is measurable with
respect to _}_’,(06)0 *++NYpy(co). A consensus can also be reached if all peo‘éle share
_their initial pri’vatc data ¥, ..., n. Wle may call this consensus the full infermation
decision. It turns out that the consensus reached by exchanging tentative decisions need
not coincide with the full information decision. However, within a nlhc‘r' simple model,
Geanakoplos and Polemarchakis [4] bave showsn that the two decis'ions are “almost al-
ways" the same. It would be worth investigating tkis in a more general setting.

.« . Secondly, even when theltwo cfcgis;ona are the same, it does pot [ollow that all peo-
ple obtaia the full iaforrsaticn, ie., it bpeed oot be th‘e case that
_}_’,(oo)'u o{Yy, ..., Yxn). If Yy(oo)is a proper subs;t of o{Y,,...,Yx}. then one
could argue that reaching consensus via exchange of teatative decisions requires 2
transfer of less information thao the exchange of all privaie information. This oo is

worth further investigation.
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Recall now the discussion dealiog with the case of inconsistent beliefs The most
interesting finding is that Alpha aad Becta can exchange statements about X and eventu-
ally agree even whea their views are differeat. Thus paradoxically, the rcaliiztion that
these views are differeat is only reached when further communication becomes imposai-

ble. This raises several basic and knotty issues that need further investigation.

Onc can readily imagine situations where the most important thing is to determine
whether or not the beliefs are izconsistent. In the communication setup of Section 4 the
realization that belisls are inconsistent is fortuitous—it bappens only if Alphe and Beta

reach ap impasse. How should ooe structure the set of imessage exchanges so as to ex-

pedite the reaching of an impasse!

Suppose pow that Alphs and Bets do reach an i:ﬁpmc («€02;). Our analysis stops
at this point, but there are two directions that can be pursued. First, 't')bscrv‘c that fith
tlbe realization that iheir beliefs are different comes the ulnderst:nding that they have
“misread’ each othc:'sl messages (ie., tbgy now kpow that i' % f, acd a, 8 a,), and
cozlxserz'ucn',fy v;l;eir estimates bave been *‘biased.” To eliminate this bias each needs to
learn what the other's view is. A straightforward way of permitting such learning is to
suppose that from the beginning Alphe admits that Beta's model P? might be any one
of a known set f‘ of models and there is a prior distnbution on f’ reflecting Alpha’s

initial judgment about DBela’s model; a symmetncal structure is formulsted for Beta.

Within such a framework it seems reasoaable to conjecture that each agent will correctly

read th2 other’s message and his sequence of estimates will converge. But if their models

are differeat then the limiting estimates may Jdiffer, and a consensus will pot emerge.

Suppose, bowerer, that tlpha and Pete want to reach a corsensus. To reach 3 con-

sensus ooe or both must change their models. One can imagine many different wars in
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which this can be done. For example, De Groot [3] proposes that each person tells the

others what his prior probability is, and be proposcs 2b ad hoc bebavioral rule whereby

cach person adjusts bis modcl to a weighted average of the others’ models. This is sot

very satisfactory in situations where commun®zating one's prior beliefs is not practicable.
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APPENDIX A

Proof of Theorem 1

Coavergence of each member's estimates follows from the Martingale Convergence
Theorem. The proof of the: rest of the Theorem proceeds 1 several steps. Consider two
ag.cn‘ts ) andvj aod iet G, (¢) a;notc the o-field generzted by the transmission and recep-
tion of mecssages f[rom agent 1 up to time t. That is,

G.(t) = o{uy(1), ..., (t=1), ..., ey(1), ..o wpg(t-1), w (1), ..o, u (1), w0 y(1), . .
1), e ) t-)) |

G, (1) = a{u(l), ... Jugt-1), . .. yuig(1), <o ey (8-1), & (1) Lo (8), w0 (2),
Golt-1), ..., e 1), ... ,w f2), ..., 6 ft-1)} '

Define S” o be the event that agent ¢ sends messages to J infinitely often. Thes
Lemma Al

Both w,(00) I{SY) and v, (o) 1(SY) are common knowledge for G,(o0) and

C, {oc). Moreover,

u,(oc) 1S ) == E(N[G (o) G {o)) ST e (A0
Cand v
v (c0) 1(S) = w, (e} 1(S) XY
where ' '
S= 585" 5" | | (A.3)
Proof , | |

Since tbere is a message transmission delay of oze unit, it follews that S* is io
C,(o0) and G,(cc). Sioce (1) is G, (t+1}measurable it follows u, (co) 19 G, (oo}

measurable. Similarly v (oo} is G, (0o} measurable.
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Consrqucnlly,‘

. v, (00} 1{57) == E(X|G, (00} N G, (o0)) H(S").

Sunlarly,
u (00) I(S") = EIX|G, () N G, (oc)) S") .
Hence,
v, (c0) 1(S) = u, (00) 1(S)
[}

To proceed further we need the following result:
Lemma A2.

Let 7, 23, ...,244) ™= &, be randca vectors and F Fa, .. ., F, be o-ficlds such

that
f, = E(s g | ) =12 ...,n. , (A1)
Then
l‘-l,-l,-"‘—z' a.4. ' (AS)
Proo‘f‘

\We c3n assume that 2, are scalars, since by applying the some argument to each
component we can generalite the result to random vectors. Suppose first that each ¢, is
square integrable. Since conditional expectation is the best mean squaze estimate and

’

s, o= Elz, 0F, ). 1t [ollows that

El:'OIlz_Eix-l?+ El:nl' "ol: "— l,?, e ”n

Adding the above relations and using =, == 7, we get

L : -~
0= Y Elsuy -2l .

o

Consequently ¢, = 2, mm 2 e - - w= r . Thusy, lemma A bold for square integrable
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random variable. To complcte the proof of lemma A2, for any number K lct’

:N = min {:,, K}. Then, by Jensen's incquality, =, - E{:,,|F, ) implics

:.K 2 E( :afl IF' ) V ' (Ab)

The last inequality implies

E:N>E:N>.-.>E:¥

>
v
V]
:Z
I
]
-’x

Conscquently, (A.6) holds with cquility.

Thberelore, for ky > k.

] [} ] [} .
R R ER I N
. ¢ . ' .
Sioce z, ' - z, *is bouaded, it is square iotegrable, therefore
[ [ : [ [ s
:,'-:,’=xz'-:2’='--=z"-z"

- Lemma 2 follows by letting & ;—co and k,—co.

Lemm== Al and A2 can oow be used to prove the following result
Lemma A3.
Suppose that

(1) 4113, ... ,0qey =+, form 3 communication riag for S, and

(it) .l(S) is common knowledge for G,(ﬁo). Gyo0), ...,G [o0).

Then u, (20) agree on S, e,

u,(ro)U(S) = ufoc) H(S) = - - - = u (o)I(S) as. (A7)
‘Proof . .

By Lemma Al

Y weeny, T, W W S W N TR T wpye g w e gy
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u,(00) {5 4*") = E(X|G,(0) N G,y foo)) =
= Elu,u()lG.(20) N G,y (c0)} ST = - (As8)
= E{s,1(00) 1S "G, (00) N G,.(00)}

By. hypothesis (i) SCG,(o0) and SCS{*'), Multiplication of both sides of (A.8) by

1{S) gives

u,{00) 1(S) = E{u,,(o0) 1{5) |G, (o0) N Gyy(e0)} (A.9)
Eq(A.9) and Lemma A2 imply

uy(00) 1(S) = w{o0) 1(S) - - - = w fo0) HS)

Lemma A3 can now be used to prove the following result.
Lemma A4

Under the hypothesis of Lemma A3

u; (00) 1(5) = E{X]G (0) N Gco) - - - A G (o0)} 1(S) (A.10)

Proof:

By (A.9)

¥, (00) 1(S) = E{X1(S)|G, () N Gyyy(o0)} (A1)
By Lemma A3

«,(c0) 1(S) = u,(c0) 1(S) , |
thus, u;(o0j1(S) is common knowledge for G (wo), Go{0), . ..,G (o0). Taking condi-

tiona! Expectatiou with respect to G(00) N G {oo0) - - - N G [(o0) we obtain

u,(00) 1(S) = E(X1i$)|G,(e0) N G{oe)n - - - NG foo))

= E{X]G (x)N G o) - ﬂG'(oo)} 1{S5)

since by hyputhesis 1{5) is common knowledse for G (). Galex), . .., G [o0) n
The assertion of Theorem | now follows from Lemma A4 since 1(Q1) is common

knowledge .for all perons. The estimate of each 3ageat cooverges to

E(X]G (e0) 1 GAoo) - - N G (o).
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APPENDIX B

Proof of Theorem 2
The information of team member i is described by the o-field Y,. The o-ficlds };

evolve dynamically as follows:

)= KOV VAdy@), G=12.m o
. i€l ' '
with initial condition

Y0 =u(0 (=12...0) - (B2
where {i] is the set of team members with whom ¢ communicates either directly or in-
directly. By assumption all the team members belong to the same communication ring;

thus, (B.1) ‘c§n be written as

Yiie) =Y, () V. Voe(d(Y;(1)), i=12...,n (B.s)
. ik
Since Y;(!) 1 Y, (00), it follows by the continuity of the decision rule d that

‘ 'l_i_:)o u, (t) = u,(o0) . (B.4)

Then equations (B.1) and (B.2) imply, that for each ’:, J we have

odVi()CY;

and

ofd(Y,(cc)) C ¥, .

Then the agreement condition for rings implies that

wy{o0) = ufoo) = uyfoo) = - - = uyfoo) = dNF, (o0))

- .
Note that V' is the join operation on @-fields: F, \'% F-_. is the smallest o-field containing F',

and F 2
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. APPENDIX C
Proof of Propaosition 1
At first we show that if
dF ) =max { dC: G CF, AdG)CF ) (C.1)

then d satisfies the agreement condition for rings. Suppose that o(d(F* )) C G C F' . '

Because G C F, d(G)< d(F' ) Since o(d(F' ))C G, it is clear that
d(F' )Eb(d(!_{):_l._I C F, o(d(H)) C G}. Thus, d(F' ) < dG). The relation < is a
partial order, consequently d(G) < d(F' ) and d(F' ) < 4(G) imply d(F' ) = d(G).
Hence d satisflies the | agreement ‘condition for pairs and in particular
do(d'F ) = d(F' ). Suppose Fy=F oy 30d ofdFx)) C Fxoy for 1 S K <.

Then

d(Fx ) = d(c(d(Fx))) < d(Fxa)

for cach K, hence d(F,) < d(Fy) < d(F 4y = d(F,), and 30 d(F) = d(Fy ) for all K.

This shows that the decision rule d defined by Eq.(C.1) salisﬁés the agreement condition

for rings.

Conversely, suppose that d satisfies the agrcexéuc..tv condition for rings. Define the
partial order < on {d(F' ): F' C F} as follows: Write d(F,) < d(F.) if and only if
there is an integer n 2> 1 anid o-fields Gx C F, 1 < K < n, such that o{d(F,)) C G,,
o{d(Gx)) C Gk.y and d(G,) = d(F). It is easy to see that d(F' ) < d(F' ) for all
F' C F, (bence < is reflexive), and that d(F,) < d‘(fﬁ) and d(F,) < d(f,) imply
d(F,) < d(F,) (bence < is tramsitive). Suppose d(F,) < d(F,) and d(F,) < d(F)).
Then there are o-fields G C F.1 <K <n+m, such that A4C,.. ) C G,
AdGxk N C G, VS K Sn4m-1, dF)=dG,,.) and d(F,) = d(G,). The

agreement condition implies that d(Gy ) = d(G ) for all K, therefore d(F )} = d(F,).

»
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Conscquently < is aotisymmetric and so < is a partial order. Finally, if G C F and

o(d(G)) C F' , then d(G) < d(£' ) by dcfinition of <. Hence, d(F' ) is the maximum

' clement of {4(G): G C F,o(d(G)) C F' } with respect to <.
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APPENDIX D

Proof of Proposition 2

Suppose b, 8,1 1 — U are F-measurable. Define 8, <' ' & to mean either that
L(8,) < L(5,) or that L(é;) = L(6,)wand §,(w) <' §{w) for all w. It is casy to see vhat
<'' 3o defined partially orders all F' fmcasur‘::blc dccisioln functions. Suppose that
F' C F and §is an F' -measurable decision function. Since d(F' ) € D(F' ), by as-
sumption  L(§) < L(d(F' ). If L(§) = L(dF')), then §€ D(F' ) also, aod
Hw) <' dIF Y for all w. It follows that d(F' ) maximites {§: o{6) € F) with respect
to <' ' . lu particular, J(F' ) maximizes {d(G): o{d(G)) C F',G C F}). Thus, Pro-

position | implies that d satisfies the agreement condition for rings.
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APPENDIX E
Proof of Proposition 3
Assume that the condition
oldF)NC F. C Fy, => d(F))=dF2) (E.1)

is true. Then o{d(F,)) V o{d(F2)) C F, N F, implies o{d(F)C F NF;CF,

vwhicb in turo implies d(F,) == d(F, N F,). Likewise d(Fp) = d(F, N F,).
Hence, the condition

o(d(F\) V o{d(F2)) C Fy A Ey =2 d(F,) = d(F3)

is true.
Conversely, assume that

. o(d(F,)) V old(Fy)) CE N E, => d(F,) = d(F,) g - (E2)
is true. Then F, C F, implies F,=F,;NF, Hence, o(d(F,)) C F, implies
o(d(F)) V o{d(F,)) C Fa=F,;NF,  Because of (E2) it follows that
d(F,) = 4(F,). Thus, the condition ‘

o(d(F\)) C Fy C Fy => d(F)) = d(F))

is true.

- .
‘.I‘.
-
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APPENDIX F

"Proof of Theorem 4

The prool of Theorem 4 proceeds in various steps: First we describe preeisely the

evolution of the estimatioa pr-cess according to each team member’s model, and deter-:

mioe what cach member's model predicts. Then, compare these predictions with what

happens in reality. Both Alpha and Beta can describe the evolution of the estimation

process according o their own view of the world as follows: Let o/ and § be the esti-.

mates of Alphs and Befa at time ¢ accordiug to 's perception. (i = Alpha, Beta).

Then,
6". == d'.(A, ﬂ"', ﬂg;, « e ,ﬂ‘i|) ) T (F.l) '
:5(;= d'-(Bv a:v d::;, L .‘,d,;) ' , (FQ)

. where d* denotes that the estimates are formed according to the rule d and the proba-

bility measnze p* induced by the distribution P’ on f. Equations (F.1) and (F.2) con- ‘

sidered for all t and for all w€ 0 describe the evolution of the estimation prucess ac-
cord:mg to memkber i's view of the world. To determive what AI;)ha and Beta predict
about the outcome of the estimation process in ‘errus of their own modeis consider the
following a;ﬁcids ‘ |
Ef =o(A, B\ B .. AL

: (¢ = Alpha, Beta) (F.3)

flia = o(B, d{, “;; e ,O|‘)

The o-ficlds _E,“ E,‘B describe the view of member 1 about the information available to
Alpha and Beta after the initial observations have becn taken and ( teatative decisions

have beea exchanged. The o-fields _I'_',“ and _F_',‘B cvolve dynamically as follows:
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d‘l(fiﬂ ”C !,:»4 nf.n C f: 7

F.12
sod old'(E* ) C F 0 FT C F (F.2

Since d satisfies the agreement conditions, (F.12) imphies that
CER )= & nET )= dF0) (F.13)

Thus, both Alphs and Deta predict that the cstir,xuth will con\‘crgé and agree after-a fin-.

ite numbcer of steps.

lo realicy, the following is bappeaing: At time & = 1 Alpha's estimatc is
_ e, = d'(4) | (F.14)
(whcrc A is Alpha's observation). The message &, is transmitted to Beta. Beta inter-
prets this message according to his own view of the world, i.e., be considers that the
realization A of A is such that

i, =af=4%(4) . : (F.13)

Furtlicrmore, for a consisteat interpretation of the data it is required that

P8(a, =4af)>0 . | ' (F.16)
At t = 2 Beta's catimate is ,
B, = dB,73,) ‘ (F.17)
(where B is Beta's observation), and this estimate is transmitted to Alphs who interprets
it in terms of his own model, i.c., he considers that the realization B of B is such that

Bo=pf=d"(F,7) a " (F.18)

For a consistent interpretation of the data it is required that

PA(B*=B)>0 . (F.19)
In geoeral, when Alpha receives message £y he interprets it in terms of his own view of
the world, i.c.,

Gk = dNA, By oy - oBK) ~(F.0)

which be sends to Bcta. For a consistent interpretation of all the messages received by
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Alpha and [eta, it i3 required that at any time

PABA=3,.1<1<)>0 .
F.22
. and P(¢" =3 , 1<1<€)>0 ( )
The following result about the evolution of the probabilities of (F.22) is true.
Proposition F.1.
‘After a finite oumber of steps o A either
PABA =B, 1 S1<s*)=0 . (F23)
or
PABA =B 1 <1< et )y=1 (F.24)
Morcover, for all s > ¢4 ‘
PABr =B 1 SIS )=PABr=F,1S1< %) . (F25)

Similar results bold for P8 ef =3, 1< 1<)
Proof

The result follows directly from the fact that convergence and agreement are predicted

A

to occur in a f{inite number of steps by both medels. The time ¢4 is given by (F.1).

Based on the proposition above we can complete the proof of Theorem 4 as {ollows:

r

PAB! =B 1<1<0>0
PP(af =35 1<1<1)>0
are true for all t < &4, 48 respectively, and (F.24) is true for beth P4 (-) and PE ("),

then because of (F.13) and the rules by which the messages are interpreted

d4 (EIAA) = d4 (EIA.?) — dB(E‘Bl?) — dD(E[BA)

for i > max (84, 42 ) 30d the estimates of Alphe and Beta agree asymptot "




oo the other band (F.23) 5 true at wine time t for either Alpha or Heta, then, at that

time Alphe or [leta realize that the sequence of recerved mevsages is amposuble, or mace

rcasonably, Alpha or flcla must conclude that the two models P* and PP” are wicon-

sistent.

v
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ABSTRACT

‘ln this paper, we develop additional results on the problem of reaching a consensus of opinion

between two decisionmakers provided with different information. Specifically, we study the problem
where the two decisionmakers may have different underlying probability models. We develop 'r'tsults
characterizing the likelihood of a consensus being reached in terms of the nature of the '

inter-decisionmaker communications. We also study vd'xc problem when the decisionmakers are aware

. of the possibility that they may have different models. In this case, the decisionmakers can reach a

deadlock state where neither decisionmaker can learn additional information from the consensus
process, and they cannot reach a consensus decision. This surprising result indicates that .
i_ncorporating human uncertainty in probability assessment into the consensus problem can lead to
outcomes not anticipated in the general theory developed in refs. [1] - [7).
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1. INTRODUCTION

The general problem of reaching a consensus of opinion among several decisionmakers
provided with different information has received considerable an:qun in the recent hterature | 1}-{7].
The consensus problem consists of finding a decision, which, to each decisionmaker, is the correct
decision according to a specific decision rule, given his information. Decisionmakers approach a
consensus by exchanging tentative decisions among themselves, thus exchanging part of their
information.

In[1}-{7), a Baycsifm framework was developed for anallyzing the consensus problem. Under
the conditions that all decisionmakers share a common prior probability model, Aumann( 1}, Borkar
and Varaiya [2], Tsitsiklis and Athans [3], Geanakoplos and Polemarchakis [4] and Washbum and
Teneketzis [5] showed that decisionmakers would approach a consensus under mild regularity
conditions on the communication pattern. '

In subsequent papers [6]i7], Tencketzis and Varaiya showed that i'claxing the condition that all
decisionmakers share a common probability model could lead to eventual disagrccrhcnt. Specifically,
they showed that, when the fact that each decisionmaker's probability modc! can be different is sceret
knowledge [12] (not available to any decisioninaker), the consensus process can reach a state of
contradiction, thereby revealing that the underlying probability models were different.

In this paper, we examine in greater depth some of the issues raised by the results of

Teneketzis and Varaiya [6],{7]. We limit our study to the case of two decisionmakers involved in the )

consensus problem. First, we study the question of how likely are the agreement or disagreement

outcomes when the two decisionmakers have secret probability models. Then, we study the

consensus problem where cach decisionmaker can have multiple probability models, so that

. knowledge that the underlying probability models can be different i§ common knowledge. Based on

- this assumption, we develop a new Bayesian formulation of the consensus problem which is similar
to the Bayesian formulation for games of incomplete information [8]. Using this formulation, we -
show that the general frameworks of Washburn and Tenekeizis |5] and Teneketzis and Varaiya [7} can
be extended to study issues of convergence and agreement in this problem. '

The icsi of this paper is viganizcd as follows: In scction
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framework which is used to study the consensus problem. In section 3, we develop additional results
on the problem studied by Tencketzis and Varaiya (6], [7]. In section 4, we discuss the consensus
problem with multiple models. Section 5 contains a discussion of the results.

2. PROBLEM FORMULATION
Throughout this paper, we will use the following stochastic decisionmaking model:

Let (Q, F ) denote a measurable space, with F denoting the o-field of measurable events*. Let
{ Phi €1} denote a family of probability measures on this measure space. The set I is assumed to be a
. discrete set, finite or countable, with the discrete topology. The measure space (2, F ) represents the .

uncertainty present in the decision problem.

There are two decisionmakers (DM) inlthc consensus problem. DM 1 (2) has a personal
probability model (2, F, Pi1) ((Q, F, P12)), where iy and i, are selected from the index set L. In
addition, each DM has a probability distribution over I, representing his beliefs that the other DM is
using a particular model, as follows: |

Denote by I x I the event space of all possible combination"s of models for the two DMs, with
the product o-field 21x 2L Let P,, P, denote probability measures on this space. DM 1's (2's) initial
private information concerning the pair of probability measures { Pi1, Pi2} used by the DM's is
represented by th; o-field H; (H,), where H, is generated by atoms h! i of the form

L= {ij} xK; , whereIDK; | | - )

Similarly, H, is generated by atoms hzi of the form
h2 = K;x {i,}, whereIDK; | - @

Egs. 1 and 2 mean that each DM is provided with private information concerning his own probability

maodel, plus the information that the other agent's model belongs to a specific set of models.
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In addition to private information concerning the personal probability models used by each
. DM, each DM receivves private information conceming the true event which occurs 1n the measurable

* The reader unfamiliar with the conccpts of measure theory shou!d refer to [10].
space (sz, F). Ths information is rcpr *sented by finite- valucd F -measurable functions

Yy Q —— Y : 3)
LetY! in F denote the o-field induced by yi. Then, ¥ iis a finits o-field

We can combine the measurable spaces (2, F) and (Ix I, 2lx 210 form the product space
(QxIxLF x 2lx 21y On tis space, define the measures [1,, T1, as follows: ‘Let FeF . Then,

My(Fiipip) = Pyliyip) Pi() N | @

TLFlipip) = Pylipip) P(F) | | ©)
[1,, 1, are probability measutes on (Qx Ix I, F x 21 x 21y because P! are probability measures for
eachi.

For two o-fields A , B, define A V B to be the smallest o-field containing bothA and B. '
Similarly, defineA A B to be the largest o-field contained in both A and B . Define Q;, Q, to be

thc restrictions of [1;,1, to the o-field

E = {¥'VY2% x {HVH,}. o ®

The decision rule used by each decisiomaker is a map from o-fields A into decision functions,

which depends on the probabilities Q; as in [5]. We assume that the decision ruies are F -

measurable. For the problems considered in this paper, the decision rules wiil be of the form
d

4B
4

1 ) £ arg

min LY { N w11} - (7)
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&,(F) € arg min EQ2{ J(w,u)|F} » (8)
uelU oo

for Fe [ where U is the space of allowable decisions, and the subscript i is used to denote the
expectat 1 according to the probability distribution Qi.' Note that multiple solutions to egs. 7 and 8
can occur. Usually, there will be a tie-breaking procedure for selecting d,(F), dy(F). We assume that
U is compact, and that '

2Q XU ——s [0,0) 9

is a continuous function of of u foreach w e Q. As in [5], let o(d;(A) ) be the o-field gtnefatcd by the
decisicn rule d under probability YT, when the available information o-field is A .

The consensus process can now be described. Each DM receives initially one measurement y;.
Based on this measurement and his prebability model, each DM computes « tentative decision
according to a decision rule dand communicates it to the other DM. Then, each DM sequentially
interprets the other DM's decision, revises his own decision due to the acquired knowledge, and

- communicates his new decision to the other DM. This process creates a sequence of information

o-fields F (n), F »(n) evolving in the lattice of sub-o-fields of F.. With this process, a sequence of
decisions is generated. ‘ '

Let u,(n) (uy(n)) denote the value of the nth communication of DM 1 (DM 2), selected as a
function of the information available to him according to his decision rule. For (®,i},i5) in Q xIx I,

we say that the DMs reach a consensus (agreement) at (w.iy.5) if and only if
lim uy(n) = lim uy(n) : (10)
n—yoo n—eo ' '

The above framework includes the formulations of [1] -{ 7} as special cases. In {1}-[5], the
common probability model formulation can be captured in the above framework by letting the set | be
the singleton set {1 ;. In this case. the probabilities P|,P, are trivial, and the remaining probahilistic '

framework corresponds to the general framework presented in [5]. The formulation of {6 can he
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captured by sclccting,'Pl, P, to be purely diagonal measures, of the form
Pilipia) = 0 = Palipiy) ifij=is, | : (1
and the selection of i 1+ ip is such that iy = i5. In this case, each decisiomaker is convinced that the

- other decisionmaker will use the same probability model as he does. However, the initial models

selected for each player may be different.

3. GENERICITY AND CONTINUITY OF CONSENSUS: THE SECRET MODEIL PROBLEM

In this section, we analyze the model of [6] to determine how likely are agreement or
disagreement outcomes. We separate our results into two cases: the case when the decision variables
" are continuous, and the case when the decision variables are discrete. In order to specialize the
formulation of section 2 to the problems investigated in {6] and [/], we make the following
assumptions: ' '

Al. There exists some A € {‘Y'1 \Y Y,z}' such that
Pi1(A) # Pi2(A), | (12)

A2. The beliefs of each DM concerning the other DM's probability model, P, and P, sati:sfy eq.
11, | |

Assumption Al guarantees that the differences in the DM's models are detectable with the available

observation. Assumption A2 specifies that the knowledge that the models may be different is secret
knowledge to each DM. ' '

3.1 Continuous decision variables -

When the decision space U is a continuous space, we make the following additional assumption:

~J

=




A3. U is aconvex subset of R?, and J(w,u) is a strictly convex, differentiable function of u for

each w.

Assumption A3 guarantees that there exist unique solutions to egs. 7 and 8. Noie that Al - A3 are
 satisfied by the model in [6], since the decisiomakers exchange the conditional probability of an event

(X) occurring given their information. In this case,
Jow) = ({oeX}-wl, | (13)

so it satisfies A3. ﬁc assumptibns in [6] concerning the different probability models of the
decisionmakers correspond to Al and A2.

In order to characterize the likelihood of agrecment or disagreement results, we need the o
following definitions: Let [ be the space of all probability distributions on (€, {Y lyy?2p, Since
{r ! VY 2} is a finite o-field, [1 is a simplex in KD, where n is the cardinaiity of the atoms of
{Y 1 V Y2}, Alternatively, [] can be viewed as a subset of R™1 with positive Lebesgue measure.
Definition: A rcsult is said to be generic in I1 if and only if the set  {I1 € [J| result is not true for [1}

-has zero n-l-dimensional Lebesgue measure. '

Proposition 1: Under assumptiohs A1l-A3,if forall B > A, either

i. uj(w)= arg min Epi,{J(w,u)| B} eU%, or
: uelU

ii. uy(w)= arg min Epir{J(wu)| B} € yo
o . uelU
where U© is the interior of U, it is genﬂric that, forsome we , a contradiction will be reached in the

process of consensus.

Proof: Without loss of generality, assume conditior: 1 holds. Consider any instance when a tentative
decision is sent from DM 1 to DM 2. Denote that decision as uy, and the information ¢-field available

to player 1 as £ . Then.uisan F | - measurable random vanable satistying




laZ

Tate s

&

T 5
pov g

LT |
PR .a

| RO

uy(w) = g;;éurﬁin Epij { J(ou) | F}. - , | (14)

In order for a contradictica not to occur, DM 2 must be able to interpret u (w} in terms of 1's own

probability model; that is,
up)(®) = arg min Epij { J(@,u) | F 5}, S (15)
ueU

where F ,; is DM 2's perception of the in“ormation available to DM 1. Note that F 21 18 a coarser
o-field than {Y ! V ¥/ 2}, hence it is also a finite field. Let U, denote the following subset'of U:

Uyy={u€eU|u=argmin Ep12 {Jw, u)lB} for some B £ le, for some o-field F ,,
satisfying {Y'VY2} oF, oY}

Note that U, is a finite set, since each o-field F 5, is finite and there are only a finite number of
a-fields samfymg the inclusion conditions. A nccessary conditicn for Lhe consensus process not to
reach a contradxctmn isuy(w) € Uy forallme Q.

_ Let f denote the atoms of {Y Tvy2y, Let F(w) denote the atom of F', containiy ®, and
f(r9) denote the atom of {V !V ¥ 2} containing o. Seiect @ € A such that PL f()) # PI2(f(w)). Such
a @ exists by assumption A2 Then, '

u () = arg 1n;in {Epi;{ Epi,(ou) {Y I VY }IF |}
uE

J(v,u) Pi‘ (¢v)

= argmin E; 1, { vef(w) }. | Filw) ] _
deu J Pl an
‘ vef{w)

Define J(fu) as

O
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Jru) = Vel (16)
| P (1)

Then,

5Pl g
(fCF,(w) : }

P (Fy(w))

uy(w) = argmin
uel

(17)

By assumption, the minimizing value is in the interior of U; a necessary and sufficient condition
characterizing ul(w) is

T P 2. I(fu () = 0. - (18)

Since u;(w) must belong to U,,, this means, for somé aeUy, AEF 4, ‘

T Pixf) ;L If,a)=0 | g 19)
A;] . : .

For cach &, A the set of P2 in [] sansfymg ¢q. 19 has n-1 dimensional chesguc measure 0, since eq.
19 imposes a linear constraint on P12." Sinc= there is a finite number of atin Uy and Ain F 4, the
set of P12 in I7 satisfying eq. 19 for some @, A also has n-1 dimensional Lebesgue measure 0, which
implies that a contradiction is generic for some ® in A. q.e.d.

“The results of proposition 1 can be understood in terms of the example below:

Example 1: Let Q = [0,2] x [0,3], and let F denote the Borel sets in Q. Let the o-field ¥ ! be
defined by the atoms {wjw € a; }, {wjwea, }, and the o-field Y Zpe defined by the atoms {wlw € b},

10
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{wjweb,} and {wlwebs}, where a;, bj are defined in figure 1. Define probability models P!, P2 as:

P!(A) = u(A)/6 , where jt is two-dimensional Lebesgue measure

PA(A) = W(AND,)/36 + WANDI24 + TU(ANb3)/T2.

Plis uniformly distributed over €, while p2 is uniformly distributed cond'itioned on b;, but has

PX(b,) = 1/6; P(b,) = 1/4; PX(b3)=T7/12. »
Let i, = 1, while iy = 2, 50 that DM 1 uses probability model P!, while DM 2 uses probability model
‘P2, The decision rule used by the DM's is defined by eq. 13, where the event is event X in figure 1.

- Asnoted in [6]), when @ € a; N b3, and DM 1 communicates first, there is eventual agreement,

although the DMs have very different reasons for reaching that agreement. In order to skow that
disagreement is generic, we will show that arbitrarily small perturbations to P2 will result in
disagreement. Specifically, let

?_(b,) = (2 +€;V12; P(by)= (3+&,)/12;; P@3) = (7-£;-6,)12.

As in [6), DM1's first communication is u) =.5. In order for this value not to be a contradiction,
3g,+ 25 =0 ~ c | , (20a)
or - . ~ ‘

£+ 26, = 4. : | - (20b)

The two-dimensional Lebesgue measﬁm of the set of all €, €, satisfying eqs. 20aorbis0, since it is
the union of two lines. Hence, for almost all choices of €,, &, a contradiction will be reached in the
first communication.

The reason for the genericity of dlsagrecment in proposmon 1 is that, although each DM can
observe only a finite number of observation values, he can communicate a continuous number of
decisions. This enables the other DM to detect differences in the probability models. Conditions i or i

in proposition 1 guarantee that the announced decisions will vary with small differences in probabnhty
models.
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3.2 Discrete Decision Variables

In this subscétion, we assume that the space U is discrete. Let f; denote an atom of {Y lyy 2}.

We define a metric on ] as follows:
For P, P2¢]],

dPLP?) = max IP(E;) - P @n

i
This metric is equivalent to the Euclidean metric on JI.

Definition: An agreement or disagreement result is said to be continuous in IIat Pil, Pi2 if .
agreement or disagreement continues to hold for all P1, P2 in a neighborhood of P!, P2,

Assume in addition:
A4, Forany Ae{Y ! V Y2}, there exists unique uy, uy in U such that

u, = argmin Epi, {J(w,u)| we A}
- uwelU

uy = arg min Epi, {J(wu)|weA}
veU

With this assumption, we have the following characterization of agreement or disagreement outcomes:

EI:QQQS]I].Q&.Z Under assurnpnons Al, A2 and A4, if agreement occurs for Pi1,Pl, it is contmuous in
T1. If disagreement occurs for P, P2, it is continuous in IT.

Proof: Without loss of generality, assume that Pil, Pi2 result in agreement. Denote by F (n) (F 5(n))
DM 1I's ( DM 2's ) sequence of o-fields generated in the consensus process. Each one of these fields
is coarser than {Y ! V Y 2}, hence finite. For any time interval n, the atoms of F 1(n) and F y(n)are -
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’ A similar result can be established in terms of 82(A) for DM 2's decisions. Selectoas
, 5 = min { 5,(A)8;(A) ). | (23)
5 {Y, VY, oA ‘ ,
‘¢
2 This minimum exists because there are only a finite numberof Ain {Y 1 V Y 2}. This choice of §
3 guarantees that the excharged sequence of decisions and the o-fields inferred by the other DM are the
K, sanie for all probabilities Pl p2 satisfying
[ .
. . dP1,Py < 8
; d(Piz, P?) < §,
13
L3S A ‘J")_-‘ LTS TP WA IR RTINS ST I S RN LA e e e T R

elements of {Y ! V Y 2}. Forany A € {Y ! V Y 2}, define the function

S P () I )

e, A ) = } (22)

Pl g A )

This is a continuous function in J[. Because of asumption A4, we can finda SI(A) such that, for
d(Pi1, P!) < §,(A),

s Pl anw

‘argmin { fich } =
ueu i -
Pl A )
argmin { ficA }
ueu

PI( A )
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thereby c@mplcting the proof. q.e.d.

The result of proposnion 2 depends critically on assumption A4. Howévcr, an argument
similar to the proof of propos tion 1 establishes the following result.

- Proposition 3. If, for each atom fie{Yvr?,

LG ) # X6, v) if uzy,
then Assumption A4 is generic in IT. |

Proof: If assumption A4 does not hold for Pi1, there must existaset Ae {¥ ' VY¥2}andu,ve U,
uv, such that - '

Epi; {J(ou) |@e A} = Epi, {J(@v)| weA).

. This implies that

> Pi'(fi) Jfyu) = > P"(f‘) V)
f,CA - f,CA

Since )(f;,v) # I(f;,u) for any atom of {¥ 1v Y2y this implies that the set of Pillwhich satisfy this
equation has Lebesgue measure Oin []. A similar argument for P22 completes the proof. g.c.d.

Example 2: Let (§3,F), Y },Y 5, and X be defined as in example 1. Define probability models P3,
P as: ‘ '

P3(A) = 2p(AMay)/15 + p(AMa,)/5, where i is two-dimensional Lebesgue mcésure,

14
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PYA) = WAN)/5 + 4u(Ara;nbinX)/95 + 1210(AnagmbynX) + 121(Anbya; 95 +
36p(AMa;Nb3NX)/95 + 12u(Ana Nb3NX)/95

where X is the éomplcment of X in Q. Rather than work with the unconditional probabilities, what is
important is to evaluate the conditional probabilities of events given available information. Thus,
Pis uniformly distributed conditiqncd or 2;, with

P3ap) - 4 Pay=.6.
P4 has the same distribution as P3 on a,, out differs on a),as

PAXlajrby) = .25; PX(Xla;nby)=.5 ‘ (24a)
PA(Xla;rby) = P3(Xlajndy) = .75 L . © (24b)
PA(Xjajro3) =.50; P3(Xlajrbs) = .25 (24c)
P4(Xla;n(byubs)) = .6 P3(Xlajn(byubs))= .5 - (24d)
PA(Xla;) = 10119 ; PX(Xjaj) = 5. (24¢)

LetU = {0,1}. Let

J(w,0) =.53ifoeX,
= Qifwe X,

Jw,1) =0ifweX
=47ifme YX.

With this definition of J, the optimal decision for DM 1 given an information set A is given by

u; =1if Pli(weX|A) > 47 , - (25)
0 otherwise. '

The same decision rule is optimal for DM 2, using the probability Piz.
Assume i} = 3, while iy = 4, that DM 1 exchanges his decision first, and that the DM's alternate in
exchanging decisions. As in example 1, assume that @ € aj N by. Fromegs. 24e and 25. DM 1's

initial decision is 1. That is, ui(1)=1. If DM I's information had been a7, his decision would have
been uy = 0. Hence, according to DM 1, he has signalled w€ aj to DM 2,
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According to DM 2's ;I)robability'modcl, uy(1) = 1 implies w€ a;. Hence, DM 2 believes meay N

b3. His optimal decision is u5(1) = 1, because of eq. 24c. According to DM 2, his decision has
signalled @ € b; U bs, because of eqs. 24a and 24b.

Because of egs. 24 a,b,c, DM 1 interprets uy(1) = 1 to mean @ € a; N (byUby). His optimal decision
isuj(2)=1L chcg, a consensus has been reached at uj(2) = uy(2) = 1. However, they have
reached this agreement for the wrong reasons, since DM 1 believes € a; N (bjUb,), whereas in
actuality, @ € a; N by! Note that any chang& in either P3 or P4 which would change the numbers in
egs. 24 a-¢ by less than .02 would continue to result in agreement.

Suppose that the order of communication is reversed, so that DM 2 communicates first. The optimal
decision uy(1) = 1. Note that PA(X | @€ by) <.45, P4(Xloebj) <.2. Hence, DM 2 belicves he
has signaled @ € bs.

Acéérding toDM 1, hq interprets up(1) = 1 to mean w € b3. Hence, he believes w € a; N bs. His
optimal decision, according to eq. 24c, is uj(1) = 0. This decision cannot be understood by DM 2,

because he expected uy(1) = 1 whether DM 1knew a; or a5. Hence, the DMs have reached a

contradiction. Note that this contradiction will be reached even if Py or Pi, are modified by .02.
Hence, the disagreemert outcome is also ontinuous.

The above results illusirate that, when the decision spaces are discrete, small discmpancics in
the probability models of the decisionmakers will not affect the consensus process. They also show
that the set of pairs of probability models for which consensus occurs has positive Lebesgue measure
in ], unlike the result in the continuous decision case of the previcus section. However, the set of
pairs of probability models for which contradictions occur also has positive Lebesgue measure.
Hence, contradictions are common phenomena in the consensus process.

The question still remains: How does the consensus process proceed once a contradiction is
encountered? Such a contradiction reveals that the basic assumption that Py(i1,ip) =  Po(iy,ip) = 0if

' i1#i9, is violated. In the next section, we present a plausible model for this process, and study its
. implications.
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4.  CONSENSUS PROBLEMS WITH *iULTIPLE PROBABILITY MODELS

When the «iecisionmakers in the consenzus process have different subjective views of the
world, and these differences are secret knowledge, the results of [6]-[7] show that a contradiction
outconx: is often reached whereby the existence of these differences becomes common knowledge. At
this point, our model of how the consensus process proceeds is that each decisionmaker models
statistically the types of probability models which the other decisionmaker may be employing, and
acquires information through the consensus process concering the possible models used by the other
DM, and the uncertainty in the event space . Within this framework, we investigate convergence and
agreement issues for two cases: When the statistics of the types of probability models are common
knowledge, and when these statistics are secret knowledge. The analysis is based on the mathematical
formulation developed in section 2, where the probability distributions Py, P, represent the statistics
used by each DM. . |

We make the following assumptions:

A5: Py ,Py are corﬁmon knowledge..

"A6: The decision rule d satisfies the agreement condition

Recall that P},P, are the subjective probabilities on the space of possible model pairs (ij, ij).
Assumption AS implies that the subjective statistical distribution of possible probability models for :
each decisionmaker is known to the other decisionmaker, and this fact is common information. Note
that we do not assume that these distributions are equal. This allows DM 1 to believe he has a
different range of possible decision models than DM 2 has, and viceversa.

The decision rule d is said to satisfy the agreement condition if , whenever G 126722
o(d(G 1)), then d(G ;) = d(G 9). The agreement condition implies that, if a decisicn is based on
information which is common to the information o-fields G 2 and Gy, then knowledge of either G ,
or G | would result in the same decision. In [5] and (7], a sufficient condition was devclope.d to

characterize when a decision rule satisfies the agreement condition. When specialized to our model,
this condition can be stated as:
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Proposition 4: Assume that there is a total order < on U. Let Dy(), Dy(w) denote the set of solutions
of egs. 7, 8 for each w. If uj(w), uy(f) are sclqctcd to be the minimal elements in Dj(w), Dy(w)
respectively, then the decision rules dy, dj satisfy the agreement condition.

Proof: Sec (5], [7].

Under assumﬁtions AS and A6, we can prove the following result:

Proposition 5: Under Assumptions AS and A6, if i} = i3 and @ € Q is such that the consensus

process reveals that i} = i3 to both decisionmakers, then the decisionmakers reach a consensus for @.

Proof: Without loss of generality, letiy =ip == 1. The cqnscnsué process starts with the initial
information o-fields ‘ '

G0 =v! xH | | /26a)

G 5(0)=Y2 x Hy - _. (26b)
After each cohmuniaﬁon is heard, each decisionmaker learns additional informaﬁon. The evolution
of information of each decisionmaker can be described by the evolution of a dynamical system in the

lattice of sub-o-fields of F, asin [5]:

G 1'(n+1) = G 1) V 6(d9(G 5(n)) : , (27 a)

Go(n+1) = G o) V o(dy(G () | (271)
(or G j(n+1) = G 1(n) V o(dx (G 2("+.1)) | _ ‘ ' A 27¢)
G 5(n+1) = G () V o(d;(G {(n)), | | (27 d)

depending or. whether communications are simultaneous or stagcered),

where d;(G ) is the decisiun rule of eqs. 7 or 8 applied to the atoms of the is-field G . The lattice
operations are V and A, where A V B represents the coarsest o-field containing both A and B, and
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A AB is the finest o-field ceatainea in both A and B . Because of A5, the evolutions indicated ineq. fat

27 are common knowledge. Note that these dynamical systems are evolving on a lattice of finite
fields, and that they generate a strictly increasing sequence of o-fields. Hence, after some; finite time t,
a limit must be reached such that, for all s > t,

T
g
,'h\

B 2

G1s) =G =G Vo@yGy) | | . (2sa)
Gz(S) =02=Gz v O’(dl(G ) ' L ' (28 b)
Egs. 28 establish that the consensus process converges to a limit; that is,

lim  uwm) = u* lim  uy(n) = uy*. | | (29)
n—joo N—oo0 : ' '

In addition, eq. 28 implies :hat
G 206G ) | - © (302)

G, 26(d;(G 1) o (30b)

Furthermore, the fields generated by a decision rule are contained in the information avaiiahle for
decisions. That is,

g
.

1
o n; *

L,
o A e
¥

-
)
]

G 72 6(dy(G ) | (31a) RNt
G2 od)(G 1) ' o (31 b)

Hence, ' ' ' o

ph!

8l
3
P S Y )

Gy2 GaAG | 2 0(dyG ) , | (322) s

. .,,
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MEN r oy ” ,\‘"‘l “- '
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<
.

Ld
' ‘4
)

Gl =2 GZAGI = O(dl(G ])) . (32 b)
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By assumption, the decision rules satisfy the agreement condition. Hence, by eq. 32,

4G = d;(G 1 AG
| (33
dz(G 2) = dz(G 1A G 7) '

Select @ € Q such that i} = 1 =i is common knowledge. Since the o-ficlds are increasing, there is an
atom g containing @in G } A G 5 of the formg = (A,1,1), where Q 2 A. Since g is an element cf
both limiting fields G j and G », it follows that

dy(g) = arg min EQ1 { J(o,u)|g}
uel
(34)
= arg min {P;(1,1) Ept1 {J(@,u)lw € A}}.
ueU : .

Similarly, since iy = 1in g,

dy(g) = arg min EQ2 { J(w,u)| g}
uelU
(35)

= arg min {P5(1,1) Ep1 {J(w,u)lwe A}}.
uelU

Note that the functions being minimized are simple multiples of each other. Thus, dyg) = dy(g) for
ali such g. Coupled with eq. 33, this completes the proof.q.e.d. ' '

According to the above proposition, even if the decisionmaiers have the same probability
model, consensus is not guaranteed unless it becomes comon knowledge that i} = i5. On the other
hand, the condition that w € Q is such that the consensus prdcess reveals that ij= ié is sufficient but
not necessary for reaching a consensus. These points are illustrated by the following example.
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Example 3; Let (1,F ), Y 1,Y 2, X, P?’, P4, U and J(w,1) be defined as in example 2. Consider the
decision rule defined in eqs. 7 and 8. Assume thai i} = ij = 3, so that both decisionmakers have the
same probability model. Assume further that there exists a probabi!*ry distribution Q on {3,4} such
that o '

Pyliy=iia=k) = Py1=iir=k) = QGIQUK). | - (36)

That i3, each decisionmaker believes that the other DM's decision mode] is sclected independently
from a known statistical population, where the set of possible models vas {P3,P4}. Furthermore, the
statistics of the selection are known identically to both decisiomakers. Howéver, the precise model
selected is private knowledge provided to each decisionm;ker.

Assume Q(3) = .1. As in example 2, we assume that the DMs alternate exchanging tentative
“decisions. As in example 2, DM 1's first decision is u)(1) = 1, and this signais that weay to DM 2.

This decisiqn does not reveal whetheriy =3 orij =4, chause ifij = 3 or 4, the same decision would

be made. ‘ o

At this point in the consensus process, DM 2 knows that ® € a 1 N b3 whether i) =3 or 4. Hence, by
eq. 8§, since ip = 3, the optimal decision is u(1) = 0. In order to identify the information signalled by
this decision, we must examine the optimal decisions corresponding to the possible information sets
that DM 2 could have, from DM 1's perspective. These decisions are:

Ifi2=3,mgalmbl,*then ux(l) = 1byeq.24a
Ifi2=3,n)ealhb2,thenu2(1) = 1byeq.24b
- Ifipg=3,mea; Nby,thenuy(l) = Obyeq.24¢
Ifip=4,wea; Nby,thenuy(l) = Dbyeq.24a
Ifig =4, wea; Nby,thenuy(l) = 1byeq.24b
Ifiy=4,0€a; Nby, thenuy(l) = 1 byeq. 24c.

Hencz, DM 1 knows that either 1y = J,meapN bj or i2 =4,m€a; Nby. According toeq. 7, his
optimal decision is selected as L ' |
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u ) = arg min EQ1 { J(o,u)|F}
ueU

= arg min{ Q(3) [(:25)(.53)I{u =0} + (.75)(.4N{u=1}] +

ue{0,1} Q(4) 1(5)(53) i{u=0} + (5)(47){u=1}]} (37

where 1{} is the indicator function, and a constant Scaling factor has been omitted. It is éasy to see
that, for Q(3) <.12, uy(2) = 1. Note that, if i} = 4, eq. 37 becomes ‘

ui(2) =  argmin { Q(4) [(2/3)(.53){u = 0} + @X. 47)1{0—1}] +

ue{0,1} QM) [(3)(.53) {u=0} + (3}(47) {u=1}]} (38)

So, u(2) should be 0if i} = 4. Therefore,uy(2) =1 signals thati; = 3toDM 2.

DM 2 now knows ij =ip =3, and e al N b3. As before, his optimal decision is uy(2)=0. This
decision does not convey any additional information to DM 1, because the decision uy(2) = 0 did not
depend on the information il = 3. Since DM 1 obtains no additional information, his tentative decision
continues tc be ul(2) = 1, and the two decisionmakers agree that an agreement cannct be reached. The
common information which forms the basis for this disagreement car. be summarized in the atom

{(O),il,iz) J[(we a N b3 . il = iz =3),orfwe 3yn bl, il =3, iz = 4)}.
Consider now the same problem, but assume that DM 2 communicates first. Then, since m € by and

P3(X Ib3) = .55, then uy(1) = 1.DM 1 observes al and receives uy(1) = 1; by the same argument as
above,he concludes that DM 2 has observed b3 and uses either model 3 or 4. His decision is ul(vl) =0.

DM 2 is aware that DM i knows both a; and b, so when he receives uy(1) = 0, he interprets this to

mean thatiy = Jard 0 € ay and b3. Hence, hclcommunicatcs uy(2) = 0. Thisreveals that iy = 3,
and the decisionmakers reach a consensus. ‘
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The results of example 3 are rather surprising. Unlike the cases studied in [6] or [7], there is
'no unmodeled secret information present in this consensus process. Indeed, both DM's are actually
using the same probability model; furthermore, they have identical probability distributions over the
class of probability models, and this is common knowledge! Nevertheless, a disagreement outcome
occurs. This implies that even admitting the possibility that the other DM can have a different
subjective probability model than your own is sufficient to prevent reaching a consensus. The reason
for this effect is the difference in the probability distributions used by each DM in egs. 7 and 8 when
one DM is unable to identify the probability model used by the other DM.

HowﬁkclyisitdmtﬂwoondiﬁmofproposiiionSmmt? Ouranalymoftheprcvxous
* section can be extended to establish the fcllowing propositions:

Proposition 6. Suppose thai the decision spécc U was continuous, and that assumption A3 was true.
Assume iy = iy. Assume additionally that, forallBe F

‘ i. ul(m)- arg;}un EQ1{J(w,u)| B} e U°
u

~a— Ko aad —— ey Eue— ———

ii. uy(@) = argmin EQ{J(wu) B} eU° . ' - o E
e |

L a0 ]

where U° is the interior of U. Then, the outcome that the consensus process will reveal that ij=igis '
generic in TIK, where k is the cardinality of L

i A J

Proposition 7: If the decision space U i is discreie, iy = 12, and for any A € F, there exists unique ul,

. ug in U such that
g |
_ u; = argmin EQ {J(wu)' A}
i uel
-
» . | o ‘ |
F up = arg min EQ2 {J(wu)| A) o ‘ oo
ueU
i - then the outcome that a consensus process reveals that iy = iy for a specific w is continuous in [TK.
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Similarly, let u91(n), up7(n) denote the decisions of DM 1 and DM 2 at stage n according to DM 2's

The proof of these propositions fcllows directly the proof of propositions 1 and 2, and will not
be reproduced here. Essentially, proposition € is based on the fact that the set of proLability models
for which a continuous decision fails to discriminate among a finite set of models has zero Lebesgue
measure in the space of all possible probability models. Under the assﬁmptions of proposition 7, one
can show that the s2quence of O-fields generated in the consensus process does not change with small
perturbations in the set of individual probability models.

. When i # iy, it it possible to show, by arguments similar to those leading to eqs. 27-32 that
the sequence of decisions {d(G 1(n))} and {d2(G o(n)}} will converge to d{(G 1) and d2(G 7)
respectively. However, since the probabilistic models of DM 1 and DM 2 are not the same, whether
or not a consensus ismacheddcpcndsmﬂmeevcntmeﬂmddreo:dcrohominunication Ifgisan
atom of G 1 AGzcontammg e, thcn a consensus will be mached ifdy(g) =dy(g)

. The above results were based on the assumption that the underlying stausncal modeis Pl and
P, used by each DM are common knowledge. When these models diffesent, and this fact is secret
knowledge, and the decision processes of DM 1 and DM 2 are consistent with their own beliefs, then
the consensus process reacha one of three different outcomes after a finite number of
communications:

1. A consensus is reached,

2. DM 1 and DM 2 realize that their underlying statxsucal models are moonsxstcnt,

3. DM 1 and DM 2 agree to disagree because thcy cannot gather any addmonal mformanon
from the consensus process.

In order to establish this, we must describe the evolution of the decision processes according to
cach DM's subjective decision model, and determine what each DM's model predicts. Then, we
compare the predicted communications with the actual communications heard. Let ugj(n), ujo(n)

denote the decisions of DM 1 and DM 2 at stage n according to DM 1's subjective decision model.

subjective decision model. Then, according to DM 1's view,

@ = djolepph. . Lupe) (399
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ujg(n) = d,;(yz.u,,m....,uum-x». | . @9b)

where d;; i : denotes thc decisions formed by the decision rule d according to the pmbabxhty measure
Yﬂl Similarly, according to DM 2's view, : :

ug1(n) = dpy(yluga(l),.. ., up9(m-1)) | | . (40a)

ug(m) = dn(yz,u“(l),...,,u“(n-l)), : (40b)
whaedz dmotesdndmamfonmdbydnedwslmmlcdaccudmgmﬂlep'obabﬂnynusm
YII,. Fquanons 39 and 40 describe the evolution of the consensus process according to DM 1's and

DM 2's perception, mpecnvcly

1o detcrminc vhat DM 1 and DM 2 predict about the outcome of the decision processes in
terms of their own perceptions, we define four sequentm of infcrmation c-ficlds, representing DM
1's actual  knowledge (G 1(n)), DM 1's belief of DM 2's knowledge (G lz(n)), DM 2's actual
knowledge (G 29(n)) and DM 2's bclxef of DM I's knowledge (G 21(m)). These fields evolve undcr

) commumcanons as:

G 1@+1) =G |1(m) V 6(d15(G 12(n)

“41a)
G 12(n+1) =G 13(n) V 6(d} (G 11(n))) (41b)
G 21(n+1) = G 21(n) V 6(d2(G 23(n))) i (41¢)
G 25(n+1)=G 22(m) V U(dzl(G 21(M))). (414d)

with initial conditions
G110) = G;®=r! x H (41¢)
G220 = G 100 = Y2 x H,. G119

As before, thes. evolutions occur in a lattice of 6-fields where the maximal elément is a finite o-field.
Hence, repeating the logic of the proof of proposition 4 establishes that the consensus process will
reach steady-state a: er a finite number of iterations. Denote this finite numberas T. '
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To est.blish the type of outcomes possible, we must examine the consensus process closely.
Atsrage 1, DM 1's decision is uy (1) = dj1(yy)- This message is transmitted to DM 2, who must
interpret this message according to his own subjective decision model. Thatis, he must find
realizations ( 1', yl' Yof possiblc‘ models and observation values such that up(h) = d2,(yl'). Fora
consistent interpretation, one must have '

Prob{ (y!'luyj(1) = dg3!. iy =i} >0 (42)

i

If this is not possiole, DM 2 will discover that the decision models arc inconsistent, leading to outcome
2. Otherwise, DM 2 eciects ugy(1) = dyp(y2uy (1))

LS

At t.is stage, DM 1 must interpret consiste itly the communications heard from DM 2. As
) before. ne must find realizations ( j, y2 ") of possible models and observation values such that upy(1)
= dlz(yz',ul 1(1)). For a consistent imcr'pf:taﬁon, one must have

R AN N N RS Y LT
e R EER 0% KT

L4
:'; Sé ' 20 | 20 -. 2 '
% Prob{ (y=' 1 ugp(1) = dia(y“uyy(M)ig=j'} > 0. 43)
54 , ' : -
i. E Define P! (n, 1), Pz(n,j) as follows:
;: e | PR i 1 . 1 oy s
B Pi(ni) = P{(y" luj1G) =da1(y" ' ug2(1).. . , u22()), iy =1,
: : forall j<n} ' o 44a)
-‘ . .
non . ir o2 . 2 Lo 5 s
57 FAn,j) = PY{ (y*lupy() =dy1p(y%uq 1 (1 . o vy '3, ig =],
i} ~ forall j<n} (44b)
g2
. E , - It is easy to see that, for eacﬁ iel, Pl(n,i) and P2(n,i) are monotone decreasing sequences in n.
{j L Since the consensus process reaches steady-state after a finite number of comfnunig:ations (forn> T),
:i . there are three possible outcomes: ' S
A“ ;Z .
E‘ ‘ 1. There exist no i or j such that both (45)
oo PY(T,)PGi,ig) >0
By "« . ' . ..
qi = | . PUT j)P(iy.j) >0
kb '
5 q
X : 26
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2. There exist one i and one j such that | (46)
~ PYT,)Py(iig) >0
PAT{PGi1d) >0

3. There 2xist more than one i or j such that : 47
PI(T,i)P,(iip) >0
P2(Tj)Py(iyJ) >0

When eq. 45 holds, the inconsistencics among the statistical models Py and P are detected in
the consensus process. Itis possible that the true probability model used by DM 1 was not considered
possible in DM 2's subjective distribution. Inthis;asc, for some n, either d;5(T) # dyp(T) or
dg (D #dy (D).

When equation 46 hold#, either a consensus outcome will be reached for ® € £, or an
inconsistency in the underlying probability models P! and PJ wili be discovered. If i = j, this is the
case analyzed in [1)-{5]; in this case, the results of [5] guarantee thatd; j(T) =d)9(T) =3 ;(T) =

+ d9(T), 50 a consensus outcome is reached. If i # j, this is the case analyzed in [6] and {7]. In this

case, two types of outcomes are possible: either dja(T) # dyo(T) or dyy(T) #d, (), sothatan .
inconsistency in models P! and P! is detected, or both d} {(T) = d(T) and dy(T) = d4»(T). For the

second outcome, the results in [6] and [7] imply also that djj(T) = dyo(T).

When eq. 47 holds, there is residual ambiguity in both the statiu :al models and the undenying
probability models. As discussed in example 3, it is possible to have do(T) = dyo(T), dy(T) =
d;1(T), and d} 1 (T) # d(T) for all n, in addition to the other two cutcomes. In this case, no

- inconsistencies have been discovered between either the statistical models P, and P,, or the

underlying probability models Pi; and Pi,. Rather, the decisionmakers have reached a stage where no
additional information will be exchanged in the consensus process. At this stage, the DMs agree that 2
consensus cannot be reached, and discontinue the process.

The above discussion has established the following proposition:

Proposition 8; Assume A6 is satisfied, and that the differences between Py and P, are secret
knowiedge to both decisionmakers. Then, the consensus process will reach one of three possible
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nutcomes after a finite number of communications:
1. A consensus is reached,
2. DM 1 and DM 2 realize that their undcrlymg statistical models are inconsistent,
3. DM 1 and DM 2 agree to disagree becausc they cannot gather any additional information
from the consensus pmcus.

A result similar to Proposition 8 was obtained in [7]. However, when each DM considers a set
of possible underlying probability models for the other DM, as is the case in this section, the ,
consensus process can result in an outcome not predicted by the model of [7); namely, the DMs can
agree o disagree even though theis underlying probability models have not been mabhshed as
inconsistent with each othez. This point is illustrated by the following example.

Example 4: Let(0,F),Y 1, Y4, X, P!, P3, P4 be defined as in examples 2 and 3. Let J(w,u) be
defined as in eq. 13, and let U = [0,1]. LetI = {1,3,4} be the set of possible probability model -
indices. Consider the decision ruls defined in egs. 7 and 8. Assume thatiy = 1, and Py(1,1) = .3,
Py(1,3) = 0, Py(1,4) = .3, so that DM 1 believes DM 2 is using cither model 1 or model 4 with equal
probability. Assume iy = 4, and Po(1,4) = 0, Py(3.4) = .1, P2(4,4) = .1, 50 that DM 2 assumes that
DM 1 is using either model 3 cr model 4 with equal probability. Assv.ne that © e ajbyand DM 1
communicates ﬁrst.

-The first tentative decision of DM 1 is uy3(1) = 5. According to DM 2,'ifDM 1 was using model P3, '

then up1(1) = .5 when w £2), and .25 when w £ 23. If DM 1 was using model P4, then uy (1) #
-25 for any ©. Hence, DM 2 believes iy = 3, and we a) Nb3. According to his own model, P4,
DM 2's communication is upo(1) = .5.

In communicating “11(1) =.5, DM 1 believes thatbc has signaled that i) = 1 and w e ay. Hence, DM

Yexpectsuyp(l) = Sifip=landw £by,orifip=4andwe b3. Consequently, DM 1 chooses

u11(2) = P(Xlajnby) Plagmb Py (1,1) + P1(Xlayby)P (@ nb3)Py (1.4)

Pl@;mb)Py(1.1) + Pla;mby)P (1,4))
= 375

Since models P3 and P! have the same distribution conditioned on aj. itis also true that u'21(2) =
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© 375. Since DM 2 believes he already knows i} = 3, and @ € aj M bs, he leams no additional
information, so his decision continues to be u22(2) = 5 This decision conveys no additional

,.,,
I.:; ’

information to DM 1, so the consensus prozess stalls at this point, and both decisionmakers agree that , .";3
a.consensus cannot be reached. ' gz.v{s

05
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. R
ey,

5. CONCLUSION

In this paper, we have studied the problem of reaching a consensus in a group of
decisionmakers by exchanging tentative decisions using a Bayesian framework. When the
decisionmakers have different probability models and the existence of those differences is secret
knowledge, the results of Teneketzis and Varaiya [6], [7] characterized all possibie outcomes of the
consensus process into two types of outcomes: |

1. Reaching a consensus decision for the group,
2. Reaching a contradictior..

The results of section 2 shed additional insight concerning how likely each of these outcomes is. By
defining the concepts of a generic outcome and a continuous outcome, we have shown that, when the
decision space is continuous-valued und some regularity conditions are met, reaching a contradiction is
a generic outcome. In contrast, when the decision space is discrete-valued, both outcomes are
continuous, so that small deviations in probability models result in the same outcomes.

e
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One of the limitations of the results of Teneketzis and Varaiya is their assumpiion that
knowledge that probability models could be different is secret knowledge to the decisionmakers,
2ithough in fact the probability mude!s are different. If the decisionmakers are humans, subject to
various biases and inaccuracies in evaluating probzbilities [9], knowledge that there can exist S
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differences in probability models is best modeici a5 common knowledge. In section 4, we developed i. ,
a Bayesian framework whereby this knowledge is represented as common knowledge, and the specific i‘;,_g‘
individual probability models are represented as private information for each decisionmaker. In this %
framework, the consensus process serves both to reveal information concerning the probability medel e

of each decisionmaker, as well as information concerning the problem uncertainty. A surprising result
is that, even when the probability models of the decisionmakers are identical, and selected
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independently from identical probability distributions, thev= zre two possible outcomcs:

1. A consensus was reached.
2. A point was reached where both decisionmakers, on the basis of common information,
agree that a consensus cannot be reached.

The second outcome has not becn predictcd by the previous formulations '[l] -[7]. Indeed, it seems
to contradict the title of Geanakoplos and Polemarchakis [4], "We can't disagree forever.” Ovr results
in section 4 show that merely admitting the possibility that the probability models are different is
sufficient to generate the second outcome. Again, we characterize how likely these outcomes are for
~ both continuous-valued and discrete-valued decision spaces U.
In conclusion, we have shown that, in our Bayesian framework, when the decisionmakers
bring human biases and inaccuracies in probability assessments into the consensus process, a
consensus may not be reac” +d even if the decisionmakers share the same probability model. The
results depend explicitly on the Bayesian formulation for mcctporanng uncertainty concerning the .
other decisionmaker’s true probability model. A different formulation, similar to Kreps and Wilsca's
formulation for sequential games [11], could be developed whereby each decisionmaker considers
only the mcst likely interpretation of the results as the basis for selecting his tentative decisions. The
_merits of each formulation rest ultimately in their ability to help us understand the behavior of humans
in consencus decisionmaking. ' | ' |
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ABSTRACT

Subjective games of incomplete information are formulated where some of the key assumptions

T

of Bayesian games of incomplete information are relaxed. The issues arising be;ausc of the new
formulation are studied in the context of a class of non-zero-sum two-person games, where each
player has a different model of the game. Two types of games are invés:igated: static games and
infinitely-repeated games. It is shown that in the static game counterintuitive outcomes of the game
occur because of the diﬁ'crcnt beliefs of the players, and that these outzomes indicate to the players

that their models were different. When the game is repeated infinitely often, it is shewa that this

répctition can alleviate the differences in the models of the players and lead to eventual cooperation.

When multiple equilibrium solutions are present, the effect of various bargaining theories on the

v

L

i outcome of the game is investigated. It is shown that, depending on the bargaining model, the

i playcrs may agree on the outcore of the game or they may realize that they have different models.
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SECTION 1: INTRODUCTION

Game theorv is the mathematical science which studies decisionmaking in'situations of
potential conflict among decisior.makers. The requirements of formal game theory are strict
regarding the rule of the game and the portrayal of exogenous uncertainty. Due to these
requirements, there are many strategic situations which carnot be initially modeled as games
because playess lack information about available strategies, utility functions or outcomes resulting
from various strategies. ' '

o Dy

Specifically, the key requirements of formal gamctlwory are:
Al IhcmhdmcgmmwnumnmfamaanIS]manplaymofthcgam

hadadecend | o

A2. Exogenous u nccna'nw is portrayed by objective pmbabxlma which are common
knowledge to all players. '

" A3. Players are fully committed to 2 priofi strategies
A4, Playcrs are rational.

As Game theory developed, attemptswcxcmadetomlax somofthaeassumpnms
Assumpuen A3 was a consequence of the normalization principle of Von Neumann [12]; Aumann
and Maschler (1] were the first to point out via a simple counterexample the inappropriateness of
the normalization principle under certain conditions; since then, considerable developments
followed by relaxing the assumption of prior commitment [2}-{6].

Harsanyi[7] and Aumann-Maschler et al. [8] pointed out that in some military problems,
players may lack full information about the payoff functions of other players, or about the physical
facilities and stiategies of other players, or even about the amount of information that other players
have about the various aspects of the game situation. Thus, Harsanyi [7] first relaxed assumption

Al and formulated and developed models of games of incomplete information. Harsanyi modeled
the incomplete information as an exogenous random move (Nature's move) to select among
possible games; he also assumed that the outcomes of this move have a (subjective) probability

Yatv

ot 63

L1+

distribution which is common knowledge to all players. Considerable progress has been achieved
in the theory of games of incomplete information using Harsanyi's original formulation (sce
[8]-10] and references therein.)
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A restriction in Harsanyi's formulation is the requirement of common knowledge of the
probability distribution of Nature’s move. In many strategic situations (especially in
noncooperative games), this distribution is subjectively assessed by each player, and subject to

‘individual biases and inaccuracies [27). In this paper, we formulate a class of games, which we
call Subjective Games of Incompleie Informatict:, which relaxes Harsanyi's requirements of
common knowledge. ‘Speciﬁcally, we allow each person to have his own subjective probability
distribution of nature’s move; in addition, each person believes his suqu‘ctiv: distribution is

3

common information, whereas it is actually secret information [15]. As a consequence, ' g"f
requircments Al and A2 are relaxed, and requirement A4 is modified in the sense that each player is %
considered to be rational within his/her own subjective view of the game. ﬁ’
E

" Various interesting issues arise because of our formulation: d

i BB

Ql. How are equilibrium strategies defined for subjective games?

Q2. How do these equilibrium stratcgm relate to the equilibrium strategies of the games
studied so far?

Q3. Does repetition of the game result in cooperation as in the case of the games studied so
far (e.g. [11))? Does repetition of the game alleviate differences in the subjective
assessments of the players and allow players to agree or: an equilibrium strategy?

Q4. Is it possible to characterize the set of all equilibria for repeated subjective games?

-

ATETET N

.

S e S

DO

To understand some of these questions, we shall consider a special class of games, namely
2x2 two-person non-zero sum games of incomplete information where the payoff matrices have a .

e
MRS

special structure. s
S|

The rest of this paper is organized as follows: In section 2, we present the model for "i
subjective games, and briefly discuss games of incomplete information and point out the R
differences between Harsanyi's model and our model. In section 3, we study static subjective :'g

non-cooperative games of incomplete information. In section 4, we consider infinitely repeated
. non-cooperative subjective games of incomplete information. Conclusions are presented in section
5. :
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SECTION 2: FORMULATION OF SUBJECTIVE GAMES OF INCOMPLETE INFORMATION

We shall dcvclob our theory of subjective games based on the following key assumptions:

Sl. Pﬁym have different probability assessments on nature’s move.

S2. Each play& thinkg that the 6thcr players' 2 ssessments are the sarne as his.

S3. Players are Bayesian. '

S4. Each player is rational within his swn subjeciivc view of the game.

Assumption S2 implies that the rules of the game are not common knowledge to all the
players, since each player thinks that the other players’ assessments are the same as his, yet this

may not be true. Assumptions Sl and S2 were previousl); used in the context of distributed
estimation and detection [14]. ‘

More precisely, let b; represent the private information of player i about the game. This

information relates to the cutcome of nature's move. In dealing with ihcomplcte information, each 5’(3
player takes a Bayesian approach. That is, each player assigns a subjective probability distribution -
. : . by J
P; . %
Pi = Pi (bl,bz,...,bi,...bn)
to nature’s move and attempts to maximize the mathematical expectation of his own payoff J; in :':
3

v

2 g

terms of this probability distribution. Furthermore, each player i assumes that P; =Pj for all j,
whereas in the actual game, P; and P; may be different.

._
.
v,

T

Comparing the mathematical model described above with Hérsanyi's formulation, we note
th..; Harsanyi also assumes that each player assigns a subjective probability distribution P;to
o~ ¥'s move; although P and P; may differ, all the distributions P; are assumed to be common

-~ x: uwledge to all players. In our formulation, any difference in subjective probabilities is secret
infor.nation. Moreover, each player is unaware that he has secret information. '
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SECTION 3:
STATIC SUBJECTIVE NON-COOPERATIVE GAMES OF INCOMPLETE INFORMATION

3.1 Problem formulation

We consider the following static two-person non-zero sum game. Nature selects one of two
games with the following payoff matrices:

Gm 1
o t
A (a,a) . (c.b)
(G-1)
B (b,c) d.d)
Game 2:
o T
A (b,b) : (d,a) o
(3-2)
B (ad) (c.0) |
We fuﬁher assume that
Ca>e>b>d . '(3‘-3)'
b‘+c>al+d : | (3.45

" Player 1 can choose action A or i and player 2 can choose action & or T. Note that, because of

4
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(3-3), each player has a dominant strategy in each one of the two games. So far, the statement of
the pt blem and the assumptions (3-3)-{3-4) arc essentially the same as in |15]. However,
contrary to [15], we now assume that the two players have a different

probability assessment of nature's move. Let r be the true probability that nature selects game 1.
Let p, q be player 1's and player 2's assessments of this event respectively. Assume p>1/2, q<1/2.

’ We will consider this problein under four different types of information that a player may
receive: '

1. No information: In this case, none of the players is informed about the outcomc of nature’s

move. ;
2. Public information: In this case, both playcrs are mfcrmed about the outcome of nature's ' N
~ move. ?
3. Private infon-nation: In this case, one player is informed about the outcome of nature’'s I '
move, whereas the other player is not. Moreover, this distribution of information is
common knowledge. r
b ' » o
4. Secret information: In this case, one player is informed about the outcome of nature's o
move whereas the other playcr is uninformed. Moreover, the uninformed player is ' ' t'.‘-z
unaware that his opponent is informed, and the informed player knows this. S‘n’
C N
The rational strategies in each of these situations are: A ' g
1. No Information , E
In this case, player 1 plays A and player 2 plays 1. The payoffs of the two players are: ;:‘;
I
. ) .3
19 =re + (1-1)d, (3-5) N
- 7
and o
o
102= b + (1-r)a. : 4 ' (3-6)

F‘{‘w
'y w7
]I A LB

2. Public mfonnatwn

A
In this case, player 1 plays A in Game 1 and W in game 2. Player 2 plays g in gamc land Tin g
<
game 2. Thus, the payoff of the players is A
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3B.=1By =ra+ (10 | G-

Define the value of information as follows: V; , the value of information to player i, is the payoff -
~ of player i when he knows the outcome of nature’s move minus the payoff of player i when no

player is informed about the outcome of nature’s move.
In lhis cas;:, the value of pul';lic infqnnation for plz;ycrs 1 and 2 is given by
vB, a1 | ' - (38)
| ng = (2r-1)a +(l-r)c - 1d | | 39
3. P;ivaw Information h |

3a. Assume at first that player 1 is the informed player. Then he plays 0 in game 1 and  in

- game 2. Piayer 2 plays 1. The payoffs of the two players are

P =c | | | @10
WPr=rb+(1-Dc | 31

3b. If player 2 is th= informed player, then he plays ¢ in game 1 and T in game 2. If

p < (a-d)/(a+c-b-d) = p* (3-12)

then player 1 will play p. Otherwise, he will play A. The expected payoffs for player 1 are then

Py = b+ (10 R | | 3-13)
JP2=ra.+(l-r)d. | | | (3-14)
respectively.
6
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The payoff for player 2 is

JP2= c (f:omsponding to j) | (3-15)

P =2 (concsponding toA) (3-16)
The value of infarmation for the two players is:

VP = (1-)c-d) G-17)

- VPy=coth-(la if p<p®
- (3-13)
= 1(a-b) otherwise '

4. Secret Information

Assume at first that player 1 is secretly informed about the outcome of the chance move.
Then, he plays A in game 1 and y in game 2. Player 2 plays t. The payoffs of the two players are

Gy =c ' . (3-19)
1Cy=tb + (1) ' - (3-20)

The value of secret information to player 1 in this case is
VS| = (1) (c-d) | L (3-21)

Assume now that player 2 is secretly informed. Then, he plays G in game 1 and T in game 2.
Player 1 plays A. The payoffs of the two players are o '

Fy=ra+(-nd | ' (3-22)

JCZ =a ‘ (3-23)
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The value of secret information to player 2 in this case is

VS, = r(a-b) B S G249 :

Let us discuss some interesting features of the solutions of these games. At first, note that
each payoff bimatrix is symmetric, hence in each one of £r. two games, the playess ai¢
interchangeable. Thus, one expects that for the classical Bayesian game, in the case of public or
secret information, the behavior of the informed and the uninformed player will be independent of

~who is the informed and who is the uninformed player. For example, in the case of private or
secret information, if player 1 were the uninformed player and played A, we would expect that if
the situation were reversed and player 2 became the uninformed player !¢ would play 6. Also, in
the case where no player was informed about the outcome of the chance move, the dominant
strategies would be (A,0) or (31,7). Coasequently, the value of private, secret or public information
would be the same for both players. It can be easily checked that this is indeed the case when
p=q=r. However, this behavior is not observed when each player has his own subjective model of
the game. When player 1 is privately informed about the chance move, player 2 always chooses ©
(the second column); on the other hand, if player 2 is privately informed about the outcome of the
chance move, player 1 does not always play p (the second row). When player 1 is the secretly
informed player, player 2 always plays < (second column); if player 2 is the secretly informed
player, player 1 always plays A (first row). When no player is informed about the outcome of the
chance move, the outcome of the game is (A,1). These facts indicate that the value of private and
secret information is now different for each player, as is evident from the analysis above.
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For the class of games considered in this section, the value of public, private and secret
information differs from player to playcr whereas in the classical Bayesian framework, this value |
does not depend on who is the informed and who is the uninfo-med player. This phenomenon is
due to the differences in the initial probabn‘hty assessments of the incomplete information.

Another mterestmg obscrvauon follows from the prevnous results. Consider the case where
player 2 is privately informed, p < p*, and r = 1/2. Then, the value of information for player 2is
given by
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VP2=c-.5b-.5a

if c< .5 a + .5 b, the value of private information for player 2 is negative! On the other hand, the
gain for player 1, the uninformed player, is equal to .5(b-d) which is positive. Thus, for the class
of symmetric games considered in this paper, we have a case where the value of private information
is negative for the informed player and the uninformed player benefits from the situation! This
phenomenon never occurs for this class of games in the classical Bayesian framework, where if the
value of private information is negative for the informed player, the uninformed player cannot
benefit either [15]. Even more surprising in this case is the fact that the informed player wants to
use his private information, whereas the uninformed player wishes that the informied player acted as
if he were not informed!

The reason for all these counterintuitive results and the differences between the subjectivc
game results and the classical Bayesian game results is that each player evaluates the game as well
as the behavior of his opponent in the game in terms of his own model and acts accordingly. Such
subjeéﬁvc evaluations lead to behavior which would never occur in the classical Bayesian
formulation as evidenced by the previous analysis.

One issue that naturally arises in these games is the following: How do the players involved
in the game interpret its outcome? Do they realize that they have different models? If neither player
is informed about the outcome of the chance move player 1 expects that player 2 will use strategy ¢

and player 2 expects that player 1 will use strategy |1 At the end of the game, each player finds out

' that the outcome is the opposite of what he expected. Since each player assumes that his opponent
is rational, both players conclude that they have different models. Similar phenomena occur if one
of the players is either secretly or privately informed.

In the case of secret information, the secretly-informed player discovers at the end of the game
that his opponent's perception of the game is different from his. On the other hand, the uninformed
player may never discover that his opponent has a different perception of \he game, or he may not
~ be able to interpret his opponent's move in terms of his own model in which case he can conclude
that either his opponent has a different model of the game, or his opponent has sertet information.

In the case of private information, the uninformed pl«yer is not in a position to discover at the
end of the game that his opponent has a different view of the game. The informed player may or
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may not discover at the end of the game that he and his opponent have inconsistent beliefs about the
game, depending on whether eq. (3-12) holds. Note that if both p,q > 1/2 or p,q < 1/2, the players
never discover the differences in their models. ‘ ‘

In this séction, we presented and analyzed a simp!e class of two-person non-coopcrativc'
nonzero sum one stage subjective games of incomplete information, and showed how the
inconsistent beliefs of the pléyers lead to counterintuitive behavior. An important issue which has -
not been discussed so far is whether the differences in belicfs between the two players are ampliﬁed
or smoothed out if the game is repeated over and over. We address this issue in the next section.

10
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SECTION 4: -
INFINITELY REPEATED SUBJECTIVE GAMES OF INCOMPLETE INFORMATION

In this section, we consider the infinitely repeated version of the class of games 'studicd in
section 3. First, we study the situation where no player is informed concemning the outcome of
Nature’s move. Then, we consider the case of private information. For this class of games, we
show that répetition can alleviate differences between subjective models and lead to agreement
about the outcome of the game. In addition, we show that the value of privalé information is
always positive in this infinitely repeated gamc.‘ Finally, we examine the effect of various
bargaining mndels on the outcome of the game. B

Before we proceed with the analysis, let's define the mcaﬂing of a solution to an
infinitely-repeated nonzero sum two-person game. According to the results of {1 l],[l6],[17], the
set of equilibrium outcomes of the infinitely repeated game are all the payoffs which are
individually rational [15]. Among these equilibrium outcomes, the set of efficient equilibria (also

" known as the core equilibria of the game) are the set of outcomes which are also Pareto optimal. A

pair of equilibrium strategies. in the infinitely-repeated game will be a solution if and only if it '
produces payoffs among the core equilibria of the infinitely-repeated game.
4.1 No Information

Assume that neither player has information cor:cerning Nature's move. In this case, the
one-stage subjective expected payoff matrix of each plaver can be computed as in the previous
section. The set of obtainable payoffs for players 1 and 2 are given in figures. 4-1 and 4-2

according to player 1's perception, and figures 4-3 and 4-4 according to player 2's perception. The

irdividually rational outcomes for each player have been outlined in the shaded areas of the figures.
It is easy to see that the set of equilibrium outcomes of the infiniiely repeated game, as perceived by
- the two players, do not coincide. Moreover, the set of core equilibria are different according to the
. perception of the two players. As far as player 1 is concemed, the set of core cqhilibria.contains
only one possible ouicome, (pa + (1-p)b, pa + (1-p)b), achieved by the strategy (A,0). The core of
the game for player Z consists of all the points of the lines AB and BC.

Let S! dcnote the set of equilidrium strategy pairs, as perceived by player i, i=1,2. If either.

11




player plays a strategy not in Si, then the other player will detect an immediate inconsistency
between the player’s models and an equilibrium will not be reached. We can now define what are
equilibrium strategies in this class of games.

Definition: The set S of equilibrium strategies of the infinitely- repeated subjective game of
incomplete information is the intersection of Slands2.

An immediate result follows from this definition:

Lemma 4,1 If a pair of strategies (‘yl, ‘(2) € S, the players never realize that theyv hav= “ifferent
models.

. Proof:

For any ('yl 72) in §, each y‘ [11] consists of two parts: The strategy player i implements as Jong

as the other player does not deviate from his announced strategy, and the threat player i implements.

if the cther player deviates frum his announced strategy. We must show that, whether deviations
from the announced strategy occur or not, no player finds out that they have different models.

Assume that both players follow their announced equilibrium strategies. Then, since (71 '12) €5 S,
the re ulting payoffs are individually rational according to each player’s percepnon so the players
canrot detect that they have different mode]s

- Assume that player 1 (2) deviates from his announced equilibrium strategy and player 2 (1) detects
this deviation. Pléyer I's (2's) threat consists of selecting the strategy which reduces player 2's
(1's) payoff the most; this strategy is p (t). From playér 2's (1's) perspective, player 1's (2's) -
threat strategy is also 1 (t). Hence, when a deviation occurs the players cannot detect that they
have different models, because their opponent's threat strategies are the same as those predicted by

~ their own models. g.ed. '
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4.2 Private infgnnl an'gn.

- Consider the infinite repetition of the game described in section 3, and assume that player 1 is
. privately informed of Nature's move. The main feature of this game is that the uninformed player
can collect additional informaiion throughout the play of the game by watching the behavior of the
informed player. On the other hand, the informed player has to decide what information (if any) he
has to reveal to his opporient and at what rate. Various interesting quesuons can be asked about
this game: '

1. Can revelation of private information be beneficial for the in{ormed plaver? -
2. What is the value of private information?
3. Does repetition alleviate the differences between the models of the two players?

4. Can the uninformed player take advantage of the private information of the informed
player?

To find the answer to thcsc questions, we shall determine core equxhbnum strategies of the
mﬁmtcly repeated subjective game. These core equilibrium strategies are strategies which result in
core equilibrium payoffs according to both players' subjective model of the infinitely rcpcated
game. The following results charactﬂnze these equilibrium payotfs

Theorem 4.2; There is a unique pair of payoffs corresponding to core equilibrium strategies in the
infinitely repeated subjective game when player 1 is pnvately informed of the outcome of Nature's
move. Thxs pair is {ra + (1- r)c, ra+ (1-r)c}.

Before proving this theorem, let's describe how the core equilibrium payoffs are determined. First,
the feasible region of payoffs for the game of incomplete information according to each player's
perception is determined as the payoffs which are individually rational for each player{10). Then,

the core equilibrium payoffs of each feasible region is determined by 1dc'1ufymg the Pareto optimal
outcomes.

In order to develop the proof of theorem 4.2, we will need the following results concerning .
infinitely repcated nonzero sum games of incomplete information [10].

13




Lemma 4.3; Player 2 can limit the actual and perceived payéff of player 1 to ¢ by playing the pure
strategy T throughout the repeated game. This strategy is the Blackwell strategy [18] of player 2.

~ Proof: See Appendix. -

Lemma4.4: According to player 1's perception, player 1 can limit the payoff of player 2topc +
(1-p)d. The strategy achieving this payoff is the maxmin strategy for the follqwing infinitely
repeated zero sum game of incomplete information:

Game 1 Game 2

o T ' G T
A -a -b A b -a
M < d 1} d <

where Prob(Nature chooses game 1) = p.

Lemma 4.5: According to player 2's perception player 1 can limit the payoff of player 2to qd +
(1-q) c. The strategy achieving this payoff is the maxmin strategy for the infinitely repeated zero
\ sum game of incomplete information of lemma 4.4, where ‘

‘ ' Prob(Nature chooses Game 1) = q. | ' ‘ v

" Lemmas 4.4 and 4.5 are direct consequences of the definition of the threat strategy and the results
of zero sum infinitely repeated games of incomplete information in {9].

Lemma 4.6: According to player 1's perception, the payoff {pa + (l—p)c,vpa +(1-p)}is an
individually-rational equilibrium payoff. According to player 2's perception, the payoff
{qa + (1-q), qa + (1-q)c} is an individually-rational equilibrium payoff. '

Proof: Individual rationality follows from Lemmas 4.3 and 4.5. The above payoff is achieved by
the following strategy: At the first stage of the game player 1(the informed player ) plays A if
Nature selects Game 1 and p if Nature selects Game 2, thereby revealing Nature's move to player '

2. Player 2 can play any strategy at stage 1. For all subsequent stages, if Nature chose Game 1,
the players choose (A,0). If Nature chose Game 2, the players chonse (p,1). If either piayer

deviates, the other player implements his threat strategy of lemma 4.3 or4.4. Note that neither
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player 1 nor player 2 can improve his payoff by deviating from the announced strategy, since the
threat strategy yiclds a lower payofT than the equilibrium for the deviating player; consequently, the
" strategies described above result in an equilibrium, according to each player’s perception of the
game. The values achieved by these strategies are the values postulated in the Lemma. q.e.d.

. Lemma4.7: According to player 1's perception, the payoff pa + (1-p)c is the most player 1 can
achieve in the infinitely repeated game. According to player 2's pcrccptiqn. the payoff qa + (1-q)c
is the most player 1 can achicve in the infinitely repeatcd game.

" Proof: See appendix.
Proof of Theorem 4.2;

From Lemmas 4.6 and 4.7, the equilibrium payoffs of Lemma 4.6 are individually rational and
Pareto optimal according to both players' perceptions. ' From lemma 4.7, these equilibrium
payoffs are the unique payoffs in the core of the game according to each player’s perception. In
order to achieve these payofTs, piayer 1 must reveal his private information concerning Nature's
move. Hence, all core equilibrium strategies for player 1 must reveal Nature's move in a finite
number of repetitions. Once Nature's move is common knowledge, each player can use his
dominant strategy in the appropriate Game, so that all core equilibrium strategies result in the
unique equilibrium payoffs for the infinitely-repeated game. q.c.d.

Corollary 4.8: Assume both players follow the core equilibrium strategies described in the proof of
lemma 4.6. Then, the players do not realize that they have different subjective models.

Proof: As long as neither player deviates from his equilibrium strategy, they cannot discover the
differences in their model, since these strategies are core equilibrium strategies. Suppose player 1
deviates from his equilibrium stratcgy. Such a deviation is immediately detected by player 2, who
switches to his threat strategy T as described in lemma 4.3. This strategy is independent of the
value of g, hence the players are unable to detect any difference in their subjeciiw}e models.
~Suppose player 2 deviates from is equilibrium strategy. Such a deviation is immediztely detected
by player 1, who switches to his threat strategy as described in lemma 4.4. This strategy is
described in [19] as follows: A set of lotteries is available to player 1. Depending on the outcome
of Nature's move, a lottery is chosen by player 1. This lottery is performed and its outcome
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determines the move of player 1 for the remainder of the game. In order for the two players to
-realize that they have different models, the move of player 1 must have zero probability according
to the model of player 2. Using the results of [19].' the maxmin strategy of player ! is: According
to player 1's perception, player 1 performs either a lottery whose outcome is A with probability 1 or
a lottery whose outcome is A with probability 1/2. According to player 2's perception, player 1
performs either a lottery whose outcorne is } with probability 1 or a lottery whose outcome is A
b with probability 1/2. Therefore, even when player 1 switches to his threat strategy, the players

i never realize that their subjective models are different because there is no contradictory behavior.
qged. '

Corollary 4.9: For the game of theorem 4.2, the value of private information is positive for player
1 ‘ ‘

Proof: The value of brivazc information for player 1 can be computed explicitly using theorem 42. .
Since pa + (1-p)b is the only core equi- librium of the infinitcly-repeated game without private
information for cither player, the expected value of information to player 1 is the diffe- rence
between the paycff of Theorem 4.2 and this payoff. This value is

“-’

V1= (1-p)e-b) >0.
2 Note also that

;o V2. (19 cb) > 0,

so the private ihformation of player 1 also has positive value for player 2. g.c.d

[ ——"

e L

‘In sum, we have answcred.man'y of the questions asked at the beginning of this subsection.
Specifically, repetition of the game serves to alleviate the differences in the models of the players
and leads to eventual agreement on a common pair of strategies, and the value of private

o -n

information is positive for the informed player, unlike the results for the static game of the previous
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section. Note that, due to the symmetry in the game, a similar set of lemmas and theorems can be
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established if player 2 were the informed player. When one player has private information, the z

~ perceived core of the game for each player has a single pair of equilibrium payoffs, and repetition %

i : of the game serves to eliminate the differences in initial probability assessments, in contrast with the i
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situation when i«ither player has private information, wheie the perceived core of the game for
player 2 can contain many additional equilibrium payoffs. The selection of cquilibrium strategies
in this case is the result ¢ bargaining between the two players to decide which pair of core
equilibrium p. -offe they will achieve. In the next subsection, we examine the effect of various
bargaining theorirs _n the outcome of the mﬁmtcly repeated subjective game without private

" information.

+

4.3 The cffect of Basgair. m&mmmhaﬂammm&hmnydnﬁmﬂﬂ:mmdﬁmm
Incompiete Infonrarion

In this section, we investigate the effect of the bargaining theories of Nash [21] and Zeuthen
{22,23] on the outcome of the infinitely repeated game of subsection 4.1. The core equilibrium
payoffs of the game according to blaycr 1's perception are the single point (pa + (1-p)b, pa +
(1-p)b). According to player 2's perception, the core equilibrium payoffs of the game are the pairs
of points on the boundary of the shaded region of fig. 4-2. We show that, depending on the
bargaining model used by the players, they may or may not realize the differeiice in their models
during the course of barga'xhing. | |

ot

Jheorem 4,1Q: Consider the bargaining problem for the infinitely repeated gafné of Section 4.1. If
the Nash bargaining modz1 with moves corsisting of the choice of strategies is used, the players
will agree on the core equilibrium strategy and never realize the differences in their models.

PR MR T o

Proof: Nash's bargaining modei is a game in normal form where each player has onl'y one move.
In this move, the player announces a strategy which achieves the payoffs comresponding to the
Nash bargaining solution, satisfying Nash's axioms [21]. The maxmin values which each player
can guarantee himself are (pd + (1-p)c, pd + (1-p)c) according to player 1's perception, and (qc +
(1-9)d, qc + (1-q)d) according to player 2's perception. In either case, the maxmin values lie on

_ the line x=y, as do points B and B' in figures 4-1 and 4-2. Hence, the payoffs corresponding to
Nash’s bargaining solution correspx. \d to points B and B’ in these figures. The strategies which

: achieve these rayoffs are the pair of strate‘gies (A,0), according to each player's perception. Thus,

the players will agree on the strategies announced and never realize the difference in their
underlying perceptions of the game. A
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In the aBovc result, players only exchanged their final bargaining strategies. When utility is
linearly transferable between the players, Nash's bargaining model with threats can be used. In
this model, players e“.change threat strategies, then select the bargaining solution based on these ‘
threat strategies. The players can detect the inconsistency between their models if the threat
strategies announced are inconsistent with the players' modcls. '

Theorem 4,11: Assume that players use Nash's bargammg model with threats and transferable
utilities[28]. If

Ps(l-_d.tah;&) = p*
d

then the players do not dctcct that they have different perceptions of the gaine. If p>p*, the p!aycrs
dctect an inconsistency in their perceptions of the game.

Proof: In Nash's bargaining model with threats and t:ans;ferable utilities[28], the threat strategies
for the players, according to player 1's perception, are the solutions of the zero sum game

| A 0 p(c-b) + (1-p)(d-a)
B . -plc-b) + (1-p)(d-a) 0

' If p < p*, the optimal pair of threat strategies is (j1,7). If p> p*, the optimal pair of threat strategies
is (A,0). According to player 2, since q < 1/2, the optiinal pair of threat strategies is (i1,7). Hence,
o l if p>p*, the players will detect an inconsistency in the announced threat strategies, If p<p*, the

threat strategies announced by each player will be consistent, and result in expected payoffs which
| are on the x=y line. Hence, the Nash bargainir.g solution will be the same as the previous theorem
and the players will not detect the difference in their perceptions of the game.

’

Other bargaining models can lead to players discovering the inconsistencies in their models.

s, A "-'-.'mq-m T T A AR Y N N T M A A T S AT

I Consider Zeuthen's regular bargaining model [22]-[23], which is a game in extensive form which
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allows bargaining to proceed in steps. We assume again that the moves of players are strategies
corresponding to the players’ payoff demands. Then, if the players do not reach an agreement in
one move, it is possible that player 2 (whose perception of the game is described by figure 4-2)

may propose a move which player 1 cannot interpret within the terms of his own model (e.g. player
2 may propose a move corresponding to a payoff which is in the core of his own game but not in

the set of equilibria of the game perceived by player 1). At that point, player 1 has a different

model of the game since, by assurhption, he excludes the possibility of an irrational opponcnt.‘

Theorems 4.10 and 4.11 illustrate the role of the bargaining model on the outcome of the
subjective game. The outcome of the infinitely repeated subjective game depends on the number of
steps required to reach an agreement. If the model predicts that agreement is reached in one step,

- {pmanan. | A

i
each player may not have the opportunity to realize that the intended meaning of the move of the e
other player was different from what he perceived it to be. On the other hand, if the mode! predicts ,:;

that more than one step may be required to reach an agre‘cmcm', then the players may have the
oppurtunity to realize that their subjective perceptions of the game are different.
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SECTION 5. CONCLUS'ON3

In this report, we formulated a class of "Subjectivc games,” where the players have different
perceptions of the rules of the game and are unaware of the differences in their perceptions. This

class of games is a generalization of the team problem of asymptotic agreement studied in [14]). We '

developed a conceptual and analytical framework for studying the effects of these differences in
perception on the strategies used by the players. By studying in detail a specific class of symmetric
games of incomplete information, we showed that the properties of these "subjective games” are
different from the properties of similar Bayesian games. Specifically, many features of the
Bayesian games, such as the positive value of private information in symmetric games, are not

.maintained when the ;layers’ perceptions of the game are allowed to differ.

~ Animportant issue which arose from our formulation was v}hethcr the players aiscover that
their perceptions are different during the play of the gams. We showed that, in a static game,
players often discover at the end of the game that they have different perceptions. Infinite repetition

~ of the game, however, may alleviate the differences in the playe:s’ models, and lead to strategies

where the players do not discover that they had different initial perceptions. In addition, we
showed that, in an infinitely-repeated game, agreement on 4 core equilibrium stratcgy dcpcnds on
the bargaining model adopted by the playcrs in the game.

The mdimcntary investigation reported here needs to be carried further. It is important to
characterize the classes of subjective games where the rational strategies are insensitive to the
differences in the perceptions of the players. In addition, our analysis should be extended beyond
the point where the two players reach an impasse. To proceed further, it may be appropriate to
formuiate the conflict situation as a bargaining problem which is perceived differently by each
player. For such a bargaining problem, the players seek strategies which bélong to the core of all
games. The bargaining theories of Harsanyi [23], Hearns [25], Kalai-Owen-Maschler [24], Owen
[26] and Zeuthen [22) may prove useful in determining such strategies and could be the starting
point for further investigation. |
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APPENDIX
Proof of Lemma 4.3:

To deteninine the payoff to which player 1 can be limited by player 2, it suffices to determine the

aporoachable set for player 2 when he tries to minimize player 1's payoff. We define the following
payoff matrix '

‘ ' ' | ‘ (]
G= ‘ ‘ ‘ o

{b.a) . [diel

The first (second) component of cach entry of G gives the payoff to player 1 when game 1 (2)is
played. These payoffs are shown in figure A-1. The approachabie set for player 2 is the shaded ’ <%
area of payoffs of fig. A-1 [9]. A point in this area is guaranteed by using the pure smfcgy T,
which is the Blackwell strategy [9] for player 2. When player 2 uses this strategy, player 1's .
payoff cannot exceed c. q.ed. ‘ ' e

Proof of Lemma 4.7: | o | - =
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The maximum payoff which player 1 can hope to achieve is an equilibrium payoff which is
individually rational for player 2. To determine this payoff, we define the payoff matrix

P
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"
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[sa+(1-5)b, sa+(1-5)b) [sc+(1-5)d, sb+(1-s)a)

-

-

[sb+(1-s)a, sc+(1-s)d] . [sd+(1-s)c, sd+(1-s)c]

and let s vary fromOto 1. For
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0<s < _(c-b) o | (A1)
(c-b + a-d) :
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sbe(l-s)a 2 sd+(l-s)c 2 sa+(l-5)b 2 sca{l-s)d. (A-2)

From Lemma 4.5, the individually-rational payoff for the game with probability s is sd + (1-s) c.
As illustrated in figure A-2, the maximum payoff for player 1 when A-1 holds is (1-s)c + sd.

For s in the range
e-b) <s g2 (A-3)
(c-b +a-d) S |
sb(l-s)a 2 sa+(1-5)b 2 sd+(1-s)c 2 sca (1-5). (A9

Figure A-3 illustrates the maximum payoff which can be obtained by player 1. After some algebra,
this péyoi‘f can be determined as S

$2(a-b)3d-3c+b-2) + s{(a-bXa+3c-b-3d) - bib+c) + ad +b2} sabtbc-achd  (A-5)
 s(a-bd-c)+b-d -

For s > 1/2, the situation is illustrated in fig. A-4. In this case, the maximum payoff which player
1 can achieve is sa + (1-s) b. '

According to [9], [20], the maximum payoff player 1 can achieve as s increases from Oto 1 is
given by the least concave function which majorizes the payoff function as s varies from O to 1. As
illustrated in fig. A-5, this function is described by I
sa+(l-s)c. ‘ - | (A-6)
Consequcmlj/, the maximum payoff player 1 can achieve when s = p, according to his perception,

is given by pa + (1-p) c. The mzximum payoff he can achieve according to player 2's perception is
given by gqa + (1-q)c. q.e.d. ‘ ' | ‘ '
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Figure 4-1. Individually Rational Payoffs According to Player 1, p>p*.
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Figure 4-4. Individually Rational Payoffs According to Player 2,q > 1 - p*.
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Figure A-1: Payoff to Which Player 1 can be Limited by Player 2
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Figure A-2. Maximum Payoff of Player L when O s < 1 - p*.
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Figure A-3. Maximum Payoff of Player 1 when 1 - p* <s < 1/2.
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Figure A-4. Maximum Payoff of Player 1 when 1/2<s < 1.
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